

ESTRUCTURAS

CVE: 6XUOYityzEF9 **Verificación:** https://sede.xunta.gal/cve

I. INTRODUCCIÓN	1
2. DEFINICIÓN DE LAS ESTRUCTURAS	1
2.1. DESCRIPCIÓN DEL PUENTE	1
3. Bases de Cálculo	1
3.1. NORMATIVA UTILIZADA	1
3.2. CRITERIOS DE SEGURIDAD	1
3.3. ACCIONES	2
3.4. VALORES REPRESENTATIVOS DE LAS ACCIONES	5
3.5. VALORES DE CÁLCULO DE LAS ACCIONES	6
3.6. COMBINACIÓN DE ACCIONES	6
3.7. CARACTERÍSTICAS DE LOS MATERIALES	7
3.7.1. Materiales	7
3.7.2. NIVELES DE CONTROL ESTABLECIDOS	7
3.8. DESCRIPCIÓN DEL PROCEDIMIENTO DE CÁLCULO	7
1. PLAN DE INSPECCIÓN Y MANTENIMIENTO DE LAS ESTRUCTURAS (EHE)	7
4.1. DESCRIPCIÓN DE LAS ESTRUCTURAS Y CLASES DE EXPOSICIÓN	7
4.2. Puntos críticos de la estructura precisados de especial atención a efectos de inspecc Mantenimiento	
4.2.1. ARQUETAS EJECUTADAS IN SITU	7
4.2.2. MUROS	8
5. PUENTE PO-400	8
APENDICES	1
APENDICE N°1. PUENTE PO-400	2

1. INTRODUCCIÓN

En la presente Separata del Proyecto se recoge la definición, tipo y bases de cálculo de las estructuras del Proyecto situadas en la zona de Vial de Sistemas Generales de Acceso Rodado al apartadero ferroviario de la PLISAN.

Las estructuras se agrupan en los siguientes tipos:

Puentes

Denominación	Tipología y función
Puente PO-400	Puente de carretera de 2 vanos isostático de vigas prefabricadas

2. DEFINICIÓN DE LAS ESTRUCTURAS

2.1. DESCRIPCIÓN DEL PUENTE

Se proyecta un puente de dos vanos de vigas prefabricadas de hormigón pretensado de tipo doble T. El diseño del puente se ha realizado de modo que tenga el mínimo canto posible para poder mantener un gálibo mínimo de 5.50 m en el vial norte-sur sin afectar a la cota de explanación de la terminal.

Los estribos son de tipo cerrado de hormigón armado. El apoyo central está formado por 3 pilas circulares y un dintel superior que recoge el apoyo de las vigas.

La estructura tiene un pretil de contención de tipo H3, con aceras en los bordes.

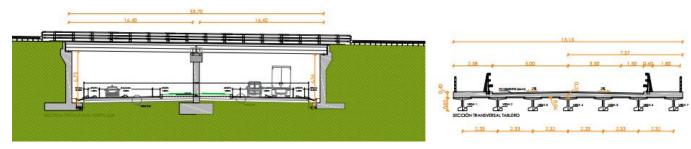


Ilustración 1. Alzado y sección de Puente PO-400.

3. BASES DE CÁLCULO

3.1. NORMATIVA UTILIZADA

Para la elaboración del proyecto se emplean las normas y recomendaciones enumeradas a continuación. Se distingue entre documentos relativos a las acciones a considerar y documentos referentes a la resistencia de la estructura.

Normas de acciones.

- (1) Ministerio de Fomento. "Instrucción sobre Acciones en Puentes de Carretera" (IAP-11).
- (2) Eurocódigo 1. Parte 3: Acciones de tráfico en puentes
- (3) Ministerio de Fomento. "Norma de construcción sismorresistente: Puentes" NCSP-07.
- (4) Código Técnico de Edificación (CTE-DB-SE-AE)

Normas de construcción.

- (5) Instrucción de Hormigón Estructural. (EHE 08).
- (6) Recomendación para la construcción de muros de escollera. Ministerio de Fomento.
- (7) ITPF-05 Instrucción sobre las inspecciones técnicas en los puentes de ferrocarril.
- (8) NAP 2-0-0.5 Pasos inferiores

3.2. CRITERIOS DE SEGURIDAD

Para justificar la seguridad de las estructuras y su aptitud de servicio, se utilizará el método de los estados límites.

Los estados se clasifican en:

- Estados límites de servicio.
- Estados límites últimos.

Estados límite de servicio (E.L.S.)

Se incluyen bajo la denominación de estados límites de servicio todas aquellas situaciones de la estructura para las que no se cumplen los requisitos predefinidos de funcionalidad, confort, durabilidad o aspecto de la estructura.

Se consideran los siguientes:

- E.L.S. de deformaciones que afecten a la apariencia o funcionalidad de la obra, o que causen daño a elementos no estructurales.
- E.L.S. de fisuración. La fisuración del hormigón por tracción puede afectar a la durabilidad, la impermeabilidad o el aspecto de la estructura. La microfisuración del hormigón por compresión excesiva puede afectar, también, a la durabilidad.

Estados límite últimos (E.L.U.)

La denominación de estados límites últimos engloba todos aquellos correspondientes a una puesta fuera de servicio de la estructura, por colapso o rotura de la misma o de una parte de ella, poniendo en peligro la seguridad de las personas.

Los estados límites últimos que se deben considerar son los siguientes:

- E.L.U. de pérdida de equilibrio, por falta de estabilidad de una parte o de la totalidad de la estructura.
- E.L.U. de agotamiento frente a solicitaciones normales, frente a cortante, torsión y flexión. Se estudian a nivel de sección de elemento estructural.

El desarrollo de los cálculos se efectúa mediante la ayuda de programas de cálculo por ordenador, complementados con comprobaciones manuales de tipo aproximado, que garantizan la correspondencia entre el cálculo y la realidad.

3.3. ACCIONES

3.3.1.1. Valores característicos de las acciones

Con carácter general se consideran los criterios especificados en las instrucciones IAP e IAPF para los puentes y en el CTE relativa a acciones a considerar en elementos de edificación. Para alguna acción particular se han considerado los criterios definidos en otras instrucciones o recomendaciones.

3.3.1.2. Acciones permanentes

Se refiere a los pesos de los elementos que constituyen la obra, y se supone que actúan en todo momento, siendo constante en magnitud y posición. Están formadas por el peso propio, las acciones horizontales de terreno sobre muros y la carga muerta.

Peso propio

La carga se deduce de la geometría teórica de la estructura, considerando para la densidad del hormigón el siguiente valor:

-	Hormigón	25.0 KN/m ³
	Acero	79 5 KNI/m3

Acciones del terreno sobre muros. Se obtienen de acuerdo con las características del terreno definidas en el estudio geotécnico .:

Nivel geotécnico	Descripción	Densidad (KN/m³)	Angulo rozamiento	Cohesión (Kpa)	Coef. Balasto (Kp/cm³)	Coef. Poisson	Mod. Deformacion Mpa
N1	Relleno antrópico	17.0/16.0	27°-32°	0/0.2	0.5-1.0	0.3	5-6
N2	Depósitos de terrazas	18/17	28°-33°	0.5/1	5-12	0.3	15-30
N3	Suelo residual granítico - Jabre GM V	17.5/16.5	30°-35°	10/20	7-15	0.3	45-60
N4	Sustrato rocoso granítico GM-II-IIII	25.0/25.5	34°-39°	200/500	500-2.500	0.2	850-1500

El terreno no es agresivo para el hormigón.

El resto de los parámetros se pueden encontrar en el informe geotécnico.

• Cargas permanentes

Son las debidas a los elementos no resistentes en conjunto con la estructura, y que en este caso son:

- Barandillas: barandilla de acero de peso 1 KN/m
- Pretiles y barreras: 11 KN/m
- Pantalla fonoabsorbente:

- Paneles hormigón 3.25 KN/m2

- Paneles de PMMA (15 mm) 0.2 KN/m2

- Paneles metálicos 0.22 KN/m2

Pavimento: Se considera un valor de espesor nominal de pavimento asfáltico de 5 cm. Para una densidad de 24.0 KN/m³, resulta una carga de:

$$p = 0.06 \times 24 = 1.44 \text{ KN/m}^2$$

3.3.1.3. Acciones permanentes de valor no constante

<u>Pretensado</u>

Se definen en el apéndice de cálculo correspondiente.

Acciones reológicas

En los puentes, se define en el apéndice de cálculo correspondiente.

Para los elementos enterrados y de reducida longitud no se han tenido en cuenta acciones reológicas en el cálculo estructural.

Empuje del terreno

De acuerdo al CTE y Guía de Cimentaciones en obras de carretera, y dada la rigidez de los elementos de marco y arquetas, los empujes del terreno para los estribos y paso inferior y arquetas se han calculado con el empuje al reposo Ko=0.50 y con empuje activo Ka = 0,33 en muros en ménsula, valores correspondientes a un terreno de ángulo de rozamiento interno 30°,

La densidad del terreno se ha adoptado de 20.0 KN/m3. No se han considerado eventuales empujes hidrostáticos al estar el nivel freático por debajo de la cota de hastiales. Se habilitará drenaje en trasdós para asegurar la inexistencia de empuje del agua.

El relleno de tierras se efectuará simétricamente a ambos lados de la estructura.

3.3.1.4. Acciones variables

Sobrecarga de uso en muros

Se define una sobrecarga de uso de 5.0 KN/m² para sobrecarga de uso en muros adyacentes a aceras.

Se define una sobrecarga de uso de 10.0 KN/m² para sobrecarga de uso en muros adyacentes a viales de tráfico y de 20 KN/m² en explanadas de mercancías.

Con respecto a los terraplenes que reciben carga ferroviaria, tal y como se expresa en la IAPF-07, que en España hace las veces de anexo nacional para la EN 1991-2:2003/A1:2010, para el caso de empujes del terreno sobre elementos de la estructura en contacto con él, se considerará la actuación sobre la zona de coronación de terraplén en la que puede actuar el tráfico ferroviario, de una sobrecarga uniforme de α 30 kN/m2 siendo α el coeficiente de clasificación, con un valor de 1,21.

Esta sobrecarga sólo se ha de tener en cuenta cuando la distancia horizontal entre el eje de la vía y la estructura sea menor o igual que la mitad de su altura.

La sobrecarga del tren 71 es de 80 kN/m. Esta sobrecarga se aplica sobre una anchura aproximada de 3,30 m, equivalente a una traviesa de 2.60 m de anchura, con apertura de cargas con talud 1:4 en una altura de 60 cm.

- 80 kN/m / (2.60 + 2*0.60/4) = 80 kN/m / 2.90 m = 27.58 kN/m2.
- La sobrecarga aplicada de 30 kN/m2 es superior al tren de cargas 71

Para el caso de muros de contención con cargas ferroviarias en la parte interior del muro, estas sobrecargas no se tendrán en cuenta por ejercer un efecto estabilizados ante el deslizamiento y vuelco, quedando así del lado de la seguridad.

La siguiente tabla recoge las acciones y valor de sobrecarga de uso tenida en cuenta en el trasdós de cada uno de los tipos de muro.

Denom.	Tipología y función	Acciones	Sobrecarga uso	
Muro M-1	Muro ménsula de contención de terraplén de hormigón. H<7.2 m	Carretera-IAP11	10 KN/m2	
Muro M-2	Muro ménsula de contención de terraplén de hormigón. H<6 m	Carretera-IAP11	10 kN/m2	
Muro M-3	Muro de contención de desmonte de escollera	Carretera-IAP11	10 kN/m2	
Muro M-4	Muros guardabalasto de hormigón armado	Ferrocarril- IAPF08	30 kN/m2	
Muro M-5	Muros de contención de explanadas de mercancías.	Carretera- IAP11 y ROM	20 kN/m2	
Muro M- 10	Muro escollera vía Mango Monforte	Ferrocarril- IAPF08	30 kN/m2	

Sobrecarga de uso en puentes

DIVISIÓN DE LA PLATAFORMA DEL TABLERO EN CARRILES VIRTUALES

A efectos de aplicación de la IAP, se define como plataforma del tablero de un puente de carretera la superficie apta para el tráfico rodado (incluyendo, por tanto, todos los carriles de circulación, arcenes, bandas de rodadura y marcas viales) situada a nivel de calzada. A efectos de la aplicación de la componente vertical de la sobrecarga de uso, la plataforma, de ancho w, se dividirá en nl carriles virtuales, de anchura wl cada uno, con el criterio que se define en la tabla 4.1-a.

TABLA 4.1-a DEFINICIÓN DE LOS CARRILES VIRTUALES

ANCHURA DE LA PLATAFORMA (w)	NÚMERO DE CARRILES VIRTUALES (n _i)	ANCHURA DEL CARRIL VIRTUAL (w)	ANCHURA DEL ÁREA REMANENTE
w < 5,4 m	n, = 1	3 m	w – 3 m
5,4 m ≤ w < 6 m	n, = 2	<u>W</u> 2	0
w ≥ 6 m	$n_j = ent\left(\frac{w}{3}\right)$	3 m	w - 3n,

Al ser la anchura máxima de la arqueta de 1.60 m se considera que solo hay 1 carril virtual, sin área remanente.

CARGAS VERTICALES DEBIDO AL TRAFICO DE VEHICULOS

Se considerará la acción simultánea de las siguientes cargas:

a) **Uno o más vehículos pesados**, según el número de carriles virtuales. Cada vehículo pesado estará constituido por dos ejes, siendo Qik la carga de cada eje, indicada en la tabla 4.1-b., correspondiente al carril i. Se tendrán en cuenta los siguientes criterios:

- En cada carril virtual se considerará la actuación de un único vehículo pesado de peso 2Qik.
- La separación transversal entre ruedas del mismo eje será de 2,00 m. La distancia longitudinal entre ejes será de 1,20 m.
- Las dos ruedas de cada eje tendrán la misma carga, que será por tanto igual a 0,5Qik.
- A efectos de las comprobaciones generales, se supondrá que cada vehículo pesado actúa centrado en el carril virtual.
- Para las comprobaciones locales, cada vehículo pesado se situará, transversalmente dentro de cada carril virtual, en la posición más desfavorable. Cuando se consideren dos vehículos pesados en carriles virtuales adyacentes, podrán aproximarse transversalmente, manteniendo una distancia entre ruedas mayor o igual que 0,50 m (ver figura 4.1-c).
- Para las comprobaciones locales, la carga puntual de cada rueda de un vehículo pesado se supondrá uniformemente repartida en una superficie de contacto cuadrada de 0,4 m x 0,4 m (ver figura 4.1-c). Se considerará que esta carga se reparte con una pendiente 1:1 (H:V), tanto a través del pavimento como a través de la losa del tablero, hasta el centro de dicha losa.
- b) Una **sobrecarga uniforme de valor qik**, según la tabla 4.1-b, con las consideraciones siguientes:
 - En el área remanente, se considerará la actuación de una sobrecarga uniforme de valor qrk, según la tabla 4.1-b.
 - La sobrecarga uniforme se extenderá, longitudinal y transversalmente, a todas las zonas donde su efecto resulte desfavorable para el elemento en estudio, incluso en aquellas ya ocupadas por algún vehículo pesado.

TABLA 4.1-b VALOR CARACTERÍSTICO DE LA SOBRECARGA DE USO

SITUACIÓN	VEHÍCULO PESADO 2Q _{ik} [kN]	SOBRECARGA UNIFORME q_{ik} (ó q_{ik}) [kN/m²]
Carril virtual 1	2 · 300	9,0
Carril virtual 2	2 · 200	2,5
Carril virtual 3	2 · 100	2,5
Otros carriles virtuales	0	2,5
Área remanente (q _{st})	0	2,5

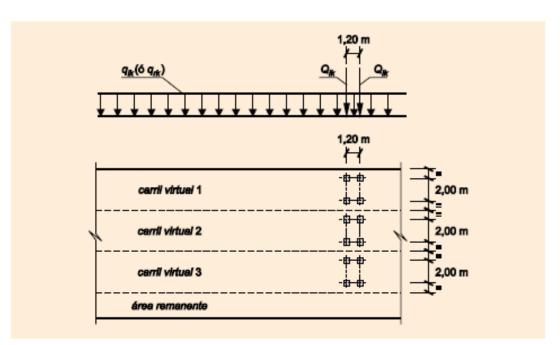


FIGURA 4.1-b DISTRIBUCIÓN DE VEHÍCULOS PESADOS Y SOBRECARGA UNIFORME

GRUPOS DE CARGAS DE TRÁFICO

La concomitancia de las distintas componentes de la sobrecarga de uso se tendrá en cuenta mediante la consideración de los grupos de carga de tráfico de la tabla 4.1-c.

TABLA 4.1-c GRUPOS DE CARGAS DE TRÁFICO. CONCOMITANCIA DE LAS DIFERENTES COMPONENTES DE LA SOBRECARGA DE USO

1								
		PLATAFORMA						
		CARGAS VERTICALES		FUERZAS HO	DRIZONTALES			
GRUPOS DE CARGAS ^{to}	VEHÍCULOS Pesados	SOBRECARGA Uniforme	AGLOMERACIÓN DE PERSONAS	FRENADO Y Arranque	FUERZA CENTRIFUGA Y TRANSVERSAL	CARGAS Verticales		
gr 1 (Cargas verticales)	Valor característico (apartado 4.1.2.1)	Valor característico (apartado 4.1.2.1)	-	-	-	Valor reducido: 2,5 kN/m²		
gr 2 (Fuerzas horizontales)	Valor reducido ⁽²⁾ : ψ ₁ Ω ₂	Valor reducido ⁽²⁾ : $\psi_1 \ q_{0k}$	-	Valor característico (apartado 4.1.3.1)	Valor característico (apartado 4.1.3.2)	-		
gr 3 (Peatones)	-	-	-	-	-	Valor característico (apartado 4.1.2.2)		
gr 4 (Aglomeraciones)	-	-	Valor característico (apartado 4.1.2.2)	-	-	Valor característico (apartado 4.1.2.2)		

- (1) La denominación de los grupos de cargas hace referencia a la componente dominante del grupo
- Se define como valor reducido el que corresponde al valor frecuente que figura en la tabla 6.1-a, es decir: φ₁ = 0,75 para los vehículos pesados

- FRENADO Y ARRANQUE.

Viento

En muros, al ser las estructuras enterradas o de altura reducida, no se han tenido en cuenta los efectos de cálculo de la acción del viento.

En puentes se calcula de acuerdo a la IAP-11.

Acciones térmicas

Al ser las estructuras enterradas y de longitud reducida, no se han tenido en cuenta los efectos de acciones térmicas en el cálculo

En puentes se calcula de acuerdo a la IAP-11.

Para paramentos verticales, el empuje del viento o presión estática (q_e) se cuantifica a partir de los definidos en el artículo 3.3. del CTE DB SE-AE:

$$q_e = q_b \cdot c_e \cdot c_p$$

Se considera el caso de ángulo de incidencia del empuje más desfavorable, es decir, perpendicular a la superficie de la pantalla, y dada la configuración simétrica de la misma, una única hipótesis de sentido del empuje.

Presión dinámica del viento, q_b

$$q_b = 0.5 \cdot \delta \cdot v_b^2$$

donde δ es la densidad del aire (1,25 kg/m³ para unas condiciones atmosféricas normales) y v_b es el valor básico de la velocidad que, para la zona de estudio, resulta de 29 m/s. De este modo, se obtiene un valor $q_b = 0,53 \text{ N/m}^2$.

Coeficiente de exposición, ce

El coeficiente c_e es función de las condiciones de exposición del elemento y de la altura del mismo sobre el terreno circundante. Para una categoría III (zona rural accidentada o llana con algunos obstáculos aislados, como árboles o construcciones pequeñas) y con una altura máxima de coronación sobre rasante de 4 m, resulta un valor c_e =1,8.

Coeficiente eólico, cp

El coeficiente c_p tiene en cuenta, tanto el coeficiente eólico de presión en la cara a sotavento (c_p) como el de succión en la cara a barlovento (c_s) , y depende de la forma de elemento constructivo y su esbeltez. Para este caso se adopta un valor c_p =1,50 (0,8 de presión y -0,7 de succión).

En definitiva, la presión de cálculo debida al empuje del viento es:

$$q_e = 0.53 \cdot 1.8 \cdot 1.5 = 1.43 \text{ kN/m}^2 \approx 143 \text{ kp/m}^2$$

Para pantallas fonoabsorbentes junto a la vía en servicio, para velocidades de circulación de vehículos superiores a 120 km/h y distancia a la pantalla de 3 m en campo abierto, la norma EN 1974-1 considera:

$$q = 800 Pa = 0.80 kN/m^2$$

e. = 0.40 para la sobrecarga uniforme

Dicho valor resulta inferior al calculado para le empuje de viento en por lo que se adopta el valor más desfavorable, es decir, **1,43 kN/m²**.

Si calculamos de acuerdo a la IAPF-07, en su apartado 2.3.4.1 Superficies verticales junto a la vía,

2.3.4.1. Superficies verticales paralelas a la vía

La presión sobre cualquier superficie vertical paralela a la vía será:

$$q_k' = \pm k_1 k_2 q_{1k}$$

donde:

k;: Coeficiente que depende de las características aerodinámicas del tren. Se adopta:

 $k_1 = 1,00$ para trenes poco aerodinámicos.

 $k_1 = 0.85$ para trenes con superficie lateral lisa.

 $k_1 = 0,60$ para trenes con forma aerodinámica (p.ej. de alta velocidad).

k₂: Coeficiente función de la superficie. Se adopta:

 $k_2 = 1.3$ para superficies de h ≤ 1.00 m y de longitud ≤ 2.50 m.

 $k_2 = 1.0$ para los restantes casos.

q₁: Presión de referencia (figura 2.16) definida por:

$$q_{1k} [kN/m^2] = \left[\frac{2.5}{(a_g + 0.25)^2} + 0.02 \right] \cdot \frac{v^2}{1600} \pmod{a_g} \ge 2.3m$$

a_a: Distancia del eje de la vía a la superficie, en [m].

v: Velocidad del tren, en [m/s].

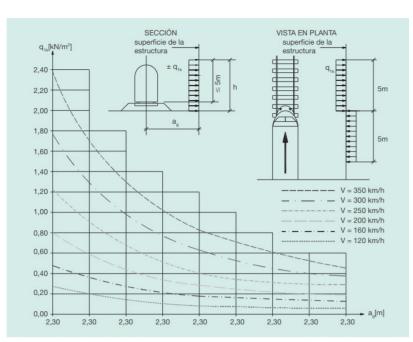


FIGURA 2.16. VALOR CARACTERÍSTICO DE LA PRESIÓN DE REFERENCIA q_{1k} PARA SUPERFICIES VERTICALES PARALELAS A LA VÍA.

Nieve

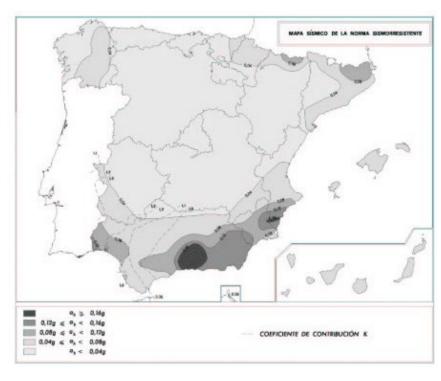
Al ser las estructuras enterradas y dada la cota de la ubicación del proyecto, no se han tenido en cuenta los efectos de acciones de nieve en el cálculo.

En puentes se calcula de acuerdo a la IAP.

3.3.1.5. Acciones accidentales

Acciones sísmicas

Se aplica la Norma de Construcción Sismorresistente, NCSP-07, que proporciona los criterios que han de seguirse dentro del territorio español para la consideración de la acción sísmica en la realización de los diferentes proyectos.


La Norma considera que una aceleración sísmica básica inferior a 0,04 g no genera solicitaciones peores que las demás hipótesis de carga, dada la diferencia de coeficientes de seguridad y de acciones simultáneas que deben considerarse con el sismo.

Se define en el apartado 2.1. de la Norma por medio del Mapa de Peligrosidad Sísmica y en el anejo 1 de la norma se detalla por municipios los valores de la aceleración sísmica básica iguales o superiores a 0.04 g. De esta forma se fija, para cada zona del territorio español, el valor de la aceleración sísmica básica ab. Este valor es característico de la aceleración horizontal de la superficie del terreno, correspondiente a un período de retorno de 500 años.

En este caso, para el término municipal de Salvaterra de Miño resulta:

a_b / g ≤ 0,04, siendo g la aceleración de la gravedad.

Se incluye a continuación el mapa de peligrosidad sísmica recogido en la NCSE-02.

De acuerdo a los criterios de aplicación de la Norma de Construcción Sismorresistente, por ser la aceleración básica de cálculo inferior al valor 0,04 g en Salvaterra, no es preceptiva su aplicación para este proyecto.

3.4. VALORES REPRESENTATIVOS DE LAS ACCIONES

Con carácter general se han seguido los criterios especificados en la Instrucción EHE relativos a las acciones a considerar en el proyecto de estructuras de hormigón.

Las acciones se definen, en su magnitud, por sus valores representativos. Una misma acción puede tener un único o varios valores representativos, según se indica a continuación, en función del tipo de acción.

3.4.1.1. Acciones permanentes (G y G*)

Para las acciones permanentes se considerará un único valor representativo, coincidente con el valor característico Gk.

3.4.1.2. Acciones variables (Q).

Cada una de las acciones variables puede considerarse con los siguientes valores representativos:

- Valor característico Q_k: valor de la acción cuando actúa aisladamente.
- Valor de combinación y/o Qk: valor de la acción cuando actúa en compañía de alguna otra acción variable.
- Valor frecuente ψ1 Qk: valor de la acción que es sobrepasado durante un período de corta duración respecto a la vida útil del puente.
- Valor casi permanente y₂ Qκ: valor de la acción que es sobrepasado durante una gran parte de la vida útil del puente.

Los valores de los coeficientes ψ son los siguientes:

VALORES DE CÁLCULO DE LAS ACCIONES

Con carácter general se han seguido los criterios especificados en la EHE. Los valores de cálculo de las diferentes acciones son los obtenidos aplicando el correspondiente coeficiente parcial de seguridad γ a los valores representativos de las acciones, definidos en el apartado anterior.

3.5.1.1. Estados límites últimos (E.L.U.)

Para los coeficientes parciales de seguridad γ se tomarán los siguientes valores básicos:

Conor	Concento		Situaciones persistentes y transitorias			Situaciones accidentales			
Conce	epto	Efecto favorable	Efecto desfavorable	Efecto favorable	Efecto desfavorable				
Acciones perma	nentes (1), (2)	$\gamma_G = 1,0$	$\gamma_{\rm G} = 1,35$	$\gamma_G = 1,0$	$\gamma_{\rm G} = 1.0$				
Acciones	Pretensado (P1), (3)	$\gamma_G = 1,0$	γ _G = 1,0	$\gamma_G = 1,0$	γ _G = 1,0				
permanentes de valor no	Pretensado (P2), (4)	$\gamma_{G} = 1,0$	γ _G = 1,35	$\gamma_G = 1,0$	γ _G = 1,0				
constante	Reológicas	$\gamma_{\rm G} = 1,0$	$\gamma_{\rm G} = 1,35$	$\gamma_{\rm G} = 1,0$	$\gamma_{\rm G} = 1,0$				
Sonidamo	Acciones del terreno	$\gamma_{G} = 1,0$	γ _G = 1,50	$\gamma_G = 1,0$	γ _G = 1,0				
Acciones varia	bles. SC uso	$\gamma_Q = 0$	γ _Q = 1,35	$\gamma_Q = 0.0$	$\gamma_{Q} = 1,0$				
Acciones varia	ables. Resto	$\gamma_Q = 0$	γ _Q = 1,5	$\gamma_Q = 0.0$	γ _Q = 1,0				
Acciones ac	cidentales			γ _A = 1,0	γ _A = 1,0				

Se adoptará para el cálculo el resultado más desfavorable de los obtenidos aplicando los tres criterios aquí definidos.

3.5.1.2. Estados límites de servicio (E.L.S.)

Para los coeficientes parciales de seguridad □ □ se tomarán los siguientes valores:

Conor	nto	Situaciones persis	stentes y transitorias
Conce	;pto	Efecto favorable	Efecto desfavorable
Acciones per	rmanentes	$\gamma_G = 1,0$	$\gamma_G = 1,0$
	Pretensado (P ₁)	$\gamma_{\rm G} = 0.9$	γ _G = 1,1
Acciones permanentes de	Pretensado (P ₂)	$\gamma_{\rm G} = 1,0$	γ _G = 1,0
valor no constante	Reológicas	$\gamma_{\rm G} = 1,0$	γ _G = 1,0
	Acciones del terreno	$\gamma_G = 1,0$	$\gamma_G = 1,0$
Acciones	variables	$\gamma_{\rm Q} = 0$	γ _Q = 1,0

COMBINACIÓN DE ACCIONES

Con carácter general se han seguido los criterios especificados en la EHE.

Las hipótesis de carga a considerar se formarán combinando los valores de cálculo de las acciones cuya actuación pueda ser simultánea, según los criterios generales que se indican a continuación.

3.6.1.1. Estados límites últimos

Situaciones persistentes y transitorias

Las combinaciones de las distintas acciones consideradas en estas situaciones, se realizará de acuerdo con el

$$\sum_{i>1} \gamma_{G,j} G_{k,j} + \sum_{i>1} \gamma_{G^*,i} G^*_{k,i} + \gamma_{Q,1} Q_{K,1} + \sum_{i>1} \gamma_{Q,i} \psi_{O,i} Q_{k,i}$$

donde:

 $G_{k,i}$ valor representativo de cada acción permanente.

= valor representativo de cada acción permanente de valor no constante.

valor representativo (valor característico) de la acción variable dominante.

valores representativos (valores de combinación) de las acciones variables concomitantes con la $Ψ_{o,i} Q_{k,\iota \square} =$ acción variable dominante.

3.6.1.2. Estados Límites de Servicio

Para estos estados se considerarán únicamente las situaciones persistentes y transitorias, excluyéndose las

Las combinaciones de las distintas acciones consideradas en estas situaciones, se realizarán de acuerdo con el siguiente criterio:

Combinación característica (poco probable o rara):

$$\textstyle \sum_{i \leq 1} \gamma_{G,i} \cdot G_{k,i} + \sum_{i \geq 1} \gamma_{G^{^\star},j} \cdot G_{k,j}^{^\star} + \gamma_{Q,1} \cdot Q_{k,1} + \sum_{i > 1} \gamma_{Q,i} \cdot \psi_{0,i} \cdot Q_{k,i}$$

Combinación frecuente:

$$\sum_{i \geq 1} \gamma_{G,i} \cdot G_{k,i} + \sum_{i \geq 1} \gamma_{G^*,j} \cdot G_{k,j}^* + \gamma_{Q,1} \cdot \psi_{1,1}. \ Q_{k,1} + \sum_{i \geq 1} \gamma_{Q,i} \cdot \psi_{2,i} \cdot Q_{k,i}$$

Combinación casi-permanente:

$$\textstyle \sum\limits_{i \leq 1} \gamma_{G,i} \cdot G_{k,i} \, + \, \sum\limits_{i \geq 1} \gamma_{G^{^{\star}},j} \cdot G_{k,j}^{^{\star}} \, + \, \sum\limits_{i \geq 1} \gamma_{Q,i} \cdot \psi_{2,i} \cdot Q_{k,i}$$

MM. SALVATERRA DE MINO – AS NEVES (PONTEVEDRA)
VIAL DE SISTEMAS GENERALES DE ACCESO RODADO

Clave: SET-288 Anejo 08 Estructuras

3.7. CARACTERÍSTICAS DE LOS MATERIALES

3.7.1. MATERIALES

Estructuras enterradas y muros

	ESPECIFICACIONES SEGUN EHE - 08								
	MATERIALES			HORMIGÓN				ACEF	RO B500 S
POSICION	FLEMENTO	Nivel de	Coeficiente de	Tipo de hormigón	Contenido minimo	Máxima	0 1	Nivel de	Coeficiente de
	ELEMENTO	Control	Seguridad	ripo de normigon	de:	relación (a/c)	Cemento	Control	Seguridad
USO NO	HORMIGÓN DE LIMPIEZA	Normal	γc=1,50	HL-150/P/30	150 kg/m³ cemento	0.65	CUALQUIERA	-	-
ESTRUCTURAL	HORMIGÓN NO ESTRUCTURAL	Normal	γc=1,50	HNE-15/P/40	150 kg/m³ cemento	0.65	CEMI	-	-
ENTERRADOS	POZOS DE CIMENTACIÓN	Normal	γc=1,50	HM 20/P/200/I	200 kg/m³ cemento	0.65	CEMI	Normal	γ _s =1,15
ENTERNADOS	ZAPATAS / VIGAS / MUROS	Normal	γc=1,50	HA 30/P/20/IIIa	325 kg/m³ cemento	0.50	CEM III/A, CEM III/B	Normal	γ _s =1,15
EXTERIOR	VIGAS / MUROS	Normal	γc=1,50	HA 30/P/12/IIIa	325 kg/m³ cemento	0.50	CEM III/A, CEM III/B	Normal	γ _s =1,15
	SOLERAS	Normal	γc=1,50	HA 25/P/12/IIIa	325 kg/m³ cemento	0.50	CEM III/A, CEM III/B	-	-
Periodo de vida util tg=50 años. Compactación por vibrado	g=50 años. compadación por resto/Illa): 35 mm				están expuestos a brimiento será el qu			DEBERÁ E FICADO CO	A EMPLEAR STAR CERTI- DN SELLO DE IOMOLOGADO.

Niveles de control

El control de calidad de los elementos de hormigón armado abarca el control de materiales y el control de la ejecución.

Control de materiales

El control de la calidad del hormigón y de sus materiales componentes, así como el control del acero se efectuará según lo establecido en la "Instrucción de Hormigón Estructural, EHE".

Control de la ejecución

El control de la calidad de la ejecución de los elementos de hormigón se efectuará según lo establecido en la "Instrucción de Hormigón Estructural, EHE"

3.7.2. NIVELES DE CONTROL ESTABLECIDOS

En el proyecto se adoptan los siguientes niveles de control según la definición de EHE:

Acero. Todos los casos: Normal
 Hormigón. Todos los casos: Estadístico
 Ejecución. Todos los casos: Intenso

3.8. DESCRIPCIÓN DEL PROCEDIMIENTO DE CÁLCULO

3.8.1.1. Puente

Se calcula con el software Autodesk Robot Structural Advanced, mediante un modelo de emparrillado plano para el cálculo de la estructura de vigas.

3.8.1.2. Muros

Se calcula mediante una hoja de cálculo que genera los empujes del terreno de acuerdo con el método de Coulomb y calcula coeficientes de seguridad a deslizamiento y vuelco y tensiones al terreno.

3.8.1.3. Software de cálculo

Para la obtención de las solicitaciones y dimensionado de los elementos estructurales, se ha dispuesto de los siguientes programas informáticos de ordenador:

Autodesk Robot Structural Advanced

- SAP 2000 de Computer Science Industries
- CYPECAD ESPACIAL, CYPE 3D, generador de pórticos, Muros de contención. de la empresa CYPE Ingenieros
- Tricalc v10
- Prontuario Informático del Hormigón estructural EHE 08, versión 3.1
- Prontuario informático de estructuras metálicas y mixtas. Versión 1.2.0.15
- Hojas de cálculo de elaboración propia.

4. PLAN DE INSPECCIÓN Y MANTENIMIENTO DE LAS ESTRUCTURAS (EHE)

Conforme al artículo 103.3 de la Instrucción de Hormigón Estructural (EHE-08), en los proyectos de todo tipo de estructuras, en el marco de dicha instrucción, es obligatorio incluir un **Plan de Inspección y Mantenimiento**, que contenga, al menos, los siguientes puntos:

- 1.- Descripción de la estructura y de las clases de exposición de sus elementos.
- 2.- Vida útil considerada.
- 3.- Puntos críticos de la estructura, precisados de especial atención a efectos de inspección y mantenimiento.
 - 4.- Periodicidad de las inspecciones. Véase cuadro de recomendaciones al final.
 - 5.- Medios auxiliares para el acceso a las distintas zonas de la estructura, en su caso.
 - 6.- Técnicas y criterios de inspección recomendados.
- 7.- Identificación y descripción, con el nivel adecuado de detalle, de la técnica de mantenimiento recomendada, donde se prevea dicha necesidad.

Cuando, en función de las características de la obra, exista reglamentación específica para su mantenimiento, ésta se aplicará conjuntamente con lo indicado en esta Instrucción.

A continuación se recogen los datos requeridos por el articulado.

4.1. DESCRIPCIÓN DE LAS ESTRUCTURAS Y CLASES DE EXPOSICIÓN

La descripción de las estructuras, ambientes y vida útil son las definidas en el presente anejo en apartados anteriores.

4.2. PUNTOS CRÍTICOS DE LA ESTRUCTURA PRECISADOS DE ESPECIAL ATENCIÓN A EFECTOS DE INSPECCIÓN Y MANTENIMIENTO.

4.2.1. ARQUETAS EJECUTADAS IN SITU

USO

PRESCRIPCIONES

- Cuando se prevea una modificación del uso que pueda alterar las solicitaciones previstas, será necesario el dictamen de un técnico competente.
- En caso de quedar hierros al descubierto, las armaduras deberán protegerse con resinas sintéticas que aseguren la perfecta unión con el hormigón existente, nunca con yeso.

- Las reparaciones de pequeñas erosiones o humedades no persistentes, serán realizadas por profesional cualificado.
- Toda manipulación de gran entidad de estos elementos deberá realizarse bajo supervisión de un técnico competente.
- Si se observa la aparición de fisuras o grietas, se avisará a un técnico competente para que dictamine su importancia y, si procede, las medidas a tomar.
- En caso de aparición de manchas de óxido, se avisará a un técnico competente.

PROHIBICIONES

- No estarán expuestos a la humedad habitual ni a productos tóxicos o corrosivos.
- No se realizarán perforaciones ni oquedades.
- Está terminantemente prohibida toda manipulación (picado o perforado) que disminuya su sección resistente o deje las armaduras al descubierto. En este último caso, nunca se protegerán con yeso las armaduras.

MANTENIMIENTO

POR EL USUARIO

- Cada año:
 - Inspección visual, observando si aparecen fisuras o cualquier otro tipo de lesión.

4.2.2. MUROS

USO

PRECAUCIONES

- Se evitará el vertido sobre las caras exteriores de productos cáusticos y de agua procedente de escorrentía.
- Se evitará cualquier causa que someta los muros a humedad habitual y se repararán las fugas observadas en las canalizaciones de suministro o evacuación de agua.

PRESCRIPCIONES

- Si se observara la aparición de fisuras o humedades, daños en los selladores o cualquier otro tipo de lesión en los paneles o en las juntas, se deberá dar aviso a un técnico competente.
- Cualquier alteración apreciable debida a desplomes, fisuras o envejecimiento indebido será analizada por un técnico competente, que dictaminará su importancia y peligrosidad y, si es preciso, las reparaciones que deban realizarse.

PROHIBICIONES

- No se apoyarán objetos pesados ni se aplicarán esfuerzos perpendiculares a su plano.
- No se sujetarán elementos tales como cables, instalaciones, soportes o anclajes de rótulos, sobre paneles
 o sobre la estructura auxiliar, ya que pueden dañar los elementos o provocar entrada o depósitos de agua.
- No se modificará la fachada o sus componentes sin las autorizaciones pertinentes y la supervisión de un técnico competente.

MANTENIMIENTO

POR EL USUARIO

- Cada 5 años:
- Inspección visual de la fachada, observando si aparecen fisuras o humedades, roturas, deterioros, desprendimientos, daños en los sellantes o cualquier otro tipo de lesión en los paneles o en las juntas.

POR EL PROFESIONAL CUALIFICADO

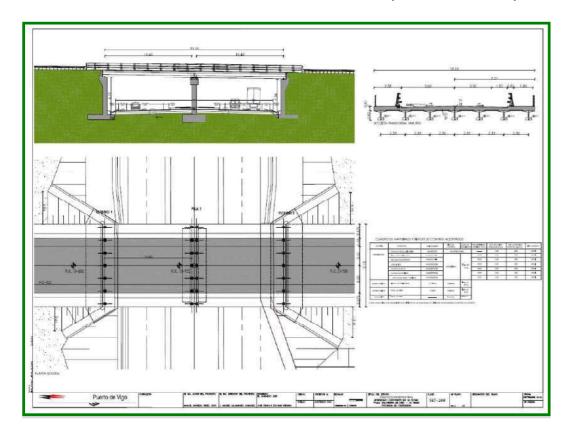
- Cada 5 años:
 - Limpieza de la suciedad debida a la contaminación y al polvo.
- Cada 10 años:
 - Inspección visual del sellado de las juntas entre paneles. En caso de deterioro, se retirará el sellado, se limpiarán los bordes de los paneles y se aplicará un nuevo sellado.

5. PUENTE PO-400

Se incluye en apéndice 1 el cálculo de la estructura.

APENDICES

APENDICE Nº1. PUENTE PO-400



PROYECTO DE CONSTRUCCIÓN: APARTADERO FERROVIARIO EN LA PLISÁN. TT.MM. SALVATERRA DE MIÑO - AS NEVES (PONTEVEDRA)

PASO SUPERIOR PO-400- ANEJO DE CÁLCULO DE ESTRUCTURAS

CONTROL DE REVISIONES

REVISIÓN	FECHA	OBSERVACIONES
1	23/11/2018	

PS PO-400 - ANEJO DE CÁLCULO

PROYECTO DE CONSTRUCCIÓN: APARTADERO FERROVIARIO EN LA PLISÁN. 2
TT.MM. DE SALVATERRA DE MIÑO - AS NEVES (PONTEVEDRA).

ÍNDICE

1. INTRODUCCIÓN	5
2. DESCRIPCIÓN DE LA ESTRUCTURA	7
3. BASES DE CÁLCULO	9
3.1 Normativa Aplicada	9
3.2 Método de los Estados Límite	
3.3 Coeficientes de Ponderación de las Acciones	16
3.4 Coeficientes de Ponderación de Materiales y Geometría	19
3.5 Programas Informáticos y Utilidades de Cálculo	21
4. LOCALIZACIÓN, VIDA ÚTIL, DURABILIDAD Y MATERIALES	23
5. RESUMEN FINAL Y CONCLUSIONES	
ANEJO Nº 1: ACCIONES CONSIDERADAS EN EL CÁLCULO	33
ANEJO Nº 2: CÁLCULO DEL TABLERO	35
ANEJO Nº 3: REPARTO HORIZONTAL DE ACCIONES	37
ANEJO Nº 4: CÁLCULO DE PILAS	39
ANEJO Nº 5: CÁLCULO DE ESTRIBOS	41
ANEJO Nº 6: PRUEBA DE CARGA DE LA ESTRUCTURA	43

PROYECTO DE CONSTRUCCIÓN: APARTADERO FERROVIARIO EN LA PLISÁN. 3

TT.MM. DE SALVATERRA DE MIÑO - AS NEVES (PONTEVEDRA).

PS PO-400 - ANEJO DE CÁLCULO

PROYECTO DE CONSTRUCCIÓN: APARTADERO FERROVIARIO EN LA PLISÁN. 4 TT.MM. DE SALVATERRA DE MIÑO - AS NEVES (PONTEVEDRA).

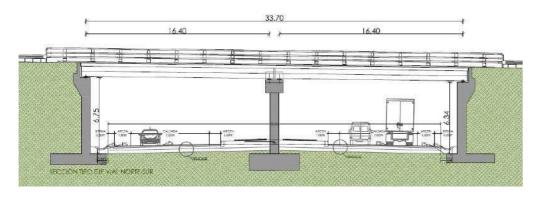
1. INTRODUCCIÓN

El presente Documento supone el Anejo de Cálculo de Estructuras del "PROYECTO DE CONSTRUCCIÓN: APARTADERO FERROVIARIO A LA PLISÁN. TT.MM. SALVATERRA DE MIÑO - AS NEVES (PONTEVEDRA)". El estudio se realiza por NETO Ingeniería en colaboración con GPO GROUP y GALAICONTROL.

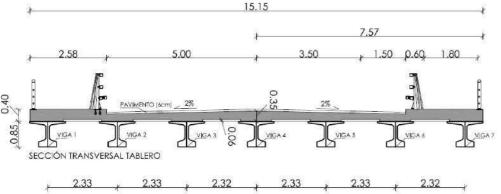
En él se definen las distintas soluciones adoptadas para la Estructura así como su cálculo de manera que se justifiquen, de acuerdo con la Normativa vigente y con suficientes garantías técnicas, los requisitos de Seguridad y Funcionalidad Estructural durante la Construcción y Uso previsto de la Estructura, considerando la totalidad de la vida útil de la misma:

- Se Describe de manera sucinta la Estructura objeto de este Anejo de Cálculo.
- Se plantean las Bases de Proyecto tenidas en cuenta a la hora de dimensionar la Estructura, indicando la Normativa vigente que se ha aplicado en el Diseño y Cálculo y que será de posterior aplicación durante su Construcción.
- Se describen los Programas Informáticos utilizados para llevar a cabo la Definición, Cálculo y Dimensionamiento de la Estructura.
- Se describen los Materiales que hayan sido contemplados para la Ejecución de la Estructura de acuerdo a la clasificación y exigencias establecidas por la Normativa aplicable. Además, se definen, para las diferentes partes de la Estructura, los requisitos de Durabilidad exigidos por la Normativa aplicable de manera que se garantice su capacidad para soportar, durante la Vida Útil para la que ha sido proyectada, las condiciones físicas y químicas a las que está expuesta y que podrían llegar a provocar su degradación.
- Se definen las Acciones a considerar en el Proyecto de la Estructura de acuerdo a las establecidas por la Normativa aplicable.
- Por último se describe la Metodología seguida para llevar a cabo el cálculo de la Estructura así como las diferentes comprobaciones realizadas para los distintos elementos estructurales y se muestran los listados de entrada de datos y resultados obtenidos.

PS PO-400 - ANEJO DE CÁLCULO


PROYECTO DE CONSTRUCCIÓN: APARTADERO FERROVIARIO EN LA PLISÁN. 6 TT.MM. DE SALVATERRA DE MIÑO - AS NEVES (PONTEVEDRA).





2. DESCRIPCIÓN DE LA ESTRUCTURA

En las imágenes siguientes se muestra la Definición General de la Estructura objeto de este Anejo de Cálculo:

Definición General: Alzado, Planta y Sección Tipo

PROYECTO DE CONSTRUCCIÓN: APARTADERO FERROVIARIO EN LA PLISÁN. 7 TT.MM. DE SALVATERRA DE MIÑO - AS NEVES (PONTEVEDRA).

PS PO-400 - ANEJO DE CÁLCULO

A continuación se resumen las características fundamentales de la Obra de Paso:

* Tipología Estructural:

Puente con Tablero Isostático de Vigas Prefabricadas tipo Doble T

Estribo 1 y 2: Estribo Cerrado de HA ejecutado in situ con Muro en Vuelta y Aletas en Ménsula en continuidad para contener el derramoe de tierras de la Plataforma.

Cimentación de Estribos 1 y 2: Superficial mediante Zapatas

Pila 1: Pórtico con Pilares de fuste circular y Dintel recto de sección Rectangular, para materializar apoyo de las vigas del tablero.

Cimentación de Pila 1: Superficial mediante Zapatas

* Datos Geométricos Principales:

Nº de Vanos: 2

Luces del Puente (m): 16,40 - 16,40

Anchura Superior del Tablero (m): 15,15

Distribución del Ancho (m): 1,80 - 0.60 -1.50 - 2@3,50 - 1,50 - 0,60 - 1,80

Canto Total del Tablero (m): 1,10 (h/l 1/14,9)

Canto de Losa In Situ (m): 0,25

Canto de Vigas Prefabricadas (m): 0,85 (h/l 1/19,3)

Nº de Vigas Prefabricadas: 7

Separación entre Vigas Prefabricadas (m): 7@2,325

Voladizos Laterales del Tablero (m): 0,00 - 0,00

3. BASES DE CÁLCULO

3.1 Normativa Aplicada

Como Acciones sobre la Estructura se han considerado las siguientes:

Instrucción sobre las Acciones a considerar en el Proyecto de Puentes de Carretera (IAP-11). Ministerio de Fomento. Dirección General de Carreteras. 2012.

Para la determinación de las Acciones Sísmicas se ha seguido:

Norma de Construcción Sismorresistente: Puentes (NCSP-07). Ministerio de Fomento. Dirección General del Instituto Geográfico Nacional. 2008.

A la hora de Comprobar y Dimensionar secciones y piezas de Hormigón Armado/Pretensado, se ha seguido:

Instrucción de Hormigón Estructural (EHE-08). Ministerio de Fomento. Secretaría General Técnica. 2010.

En cuanto a las Cimentaciones se ha seguido:

Guía de Cimentaciones en Obras de Carretera, 3ª Ed. (GCOC). Ministerio de Fomento. Dirección General de Carreteras. 2009.

En lo que respecta a Elementos Funcionales y Auxiliares se ha seguido:

- Nota Técnica sobre Aparatos de Apoyo para Puentes de Carretera. Ministerio de Obras Públicas, Transportes y Medio Ambiente. Dirección General de Carreteras. 1995.
- Norma Europea. Apoyos Estructurales. Parte 3: Apoyos Elastoméricos (UNE-EN 1337-3). AENOR: 2005.
- Nota de Servicio sobre Losas de Transición en Obras de Paso. Dirección General de Carreteras. 1992.
- Orden Circular 35/2014 sobre Criterios de Aplicación de Sistemas de Contención de Vehículos. Ministerio de Fomento. Dirección General de Carreteras. 2014.

PROYECTO DE CONSTRUCCIÓN: APARTADERO FERROVIARIO EN LA PLISÁN. 9
TT.MM. DE SALVATERRA DE MIÑO - AS NEVES (PONTEVEDRA).

PS PO-400 - ANEJO DE CÁLCULO

Otras Normativas consideradas:

- Orden Circular 11/2002 sobre Criterios a tener en cuenta en el Proyecto y Construcción de Puentes con Elementos Prefabricados de Hormigón Estructural.
- Recomendaciones para la Realización de Pruebas de Carga de Recepción en Puentes de Carretera. Ministerio de Fomento. Dirección General de Carreteras. 1999.

PROYECTO DE CONSTRUCCIÓN: APARTADERO FERROVIARIO EN LA PLISÁN.

10
TT.MM. DE SALVATERRA DE MIÑO - AS NEVES (PONTEVEDRA).

3.2 Método de los Estados Límite

La seguridad de una Estructura frente a un riesgo puede ser expresada en términos de la probabilidad de fallo, caracterizada por un valor del índice de fiabilidad.

En este Documento, de acuerdo con la Normativa vigente, se comprueba la Estructura objeto del Proyecto mediante un Análisis Estructural y se asegura la fiabilidad requerida adoptando el "Método de los Estados Límite".

Se definen como "Estados Límite" aquellas situaciones para las que, de ser superadas, puede considerarse que la estructura no cumple alguno de los requisitos de para los que ha sido proyectada.

Los estados límite se clasifican en:

- Estados Límite Últimos (ELU)
- ELU de equilibrio (EQU), por pérdida de estabilidad estática de una parte o del conjunto de la estructura, considerada como un cuerpo rígido. Se caracteriza por que pequeñas variaciones en el valor o en la distribución espacial de acciones con un mismo origen resultan significativas y por que la resistencia de los materiales estructurales o del terreno no son en general determinantes.
- ELU de rotura (STR), por agotamiento resistente o deformación plástica excesiva, donde la resistencia de los materiales estructurales es determinante.
- ELU de fatiga (FAT), relacionado con los daños que pueda sufrir una estructura o cualquiera de sus elementos como consecuencia de solicitaciones variables repetidas.
- Estados Límite de Servicio (ELS)
- ELS de fisuración que afecte a la durabilidad o estética del puente.
- ELS de deformación que afecte a la apariencia o funcionalidad de la obra, o que cause daño a elementos no estructurales.
- ELS de vibraciones que no sean aceptables para los usuarios del puente o que puedan afectar a su funcionalidad o provocar daños en elementos no estructurales.
- ELS de plastificaciones en zonas localizadas de la estructura que puedan provocar daños o deformaciones irreversibles.
- ELS de deslizamiento en uniones mediante tornillos de alta resistencia

Debe comprobarse que una estructura no supere ninguno de los Estados Límite anteriormente definidos, para cualquiera de las situaciones de proyecto indicadas a continuación, considerando los valores de cálculo de las acciones, de las características de los materiales y de los datos geométricos.

PROYECTO DE CONSTRUCCIÓN: APARTADERO FERROVIARIO EN LA PLISÁN. 11
TT.MM. DE SALVATERRA DE MIÑO - AS NEVES (PONTEVEDRA).

PS PO-400 - ANEJO DE CÁLCULO

Como Situaciones de Proyecto a considerar se encuentran las siguientes:

- Situaciones Persistentes, que corresponden a las condiciones de uso normal de la estructura.
- Situaciones Transitorias, como son las que se producen durante la construcción o reparación de la estructura.
- Situaciones Accidentales, que corresponden a condiciones excepcionales aplicables a la estructura.
- Situaciones Sísmicas, que corresponden a condiciones excepcionales aplicables a la estructura durante un evento sísmico.

El procedimiento de comprobación, para cierto Estado Límite, consiste en deducir, por una parte, el efecto de las acciones aplicadas a la estructura o parte de ella y, por otra, la respuesta de la estructura para la situación límite en estudio. El Estado Límite quedará garantizado si se verifica, con una fiabilidad aceptable, que la capacidad de respuesta estructural no resulta inferior al efecto de las acciones aplicadas.

La denominación de Estados Límite Últimos engloba todos aquellos que producen el fallo de la estructura, por colapso o rotura de la misma o de una parte de ella. En la comprobación de los Estados Límite Últimos se debe satisfacer la condición:

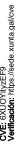
Ed ≤ Rd

Ed: Valor de cálculo del Efecto de las acciones.

Rd: Valor de cálculo de la Resistencia correspondiente.

Para la evaluación del Estado Límite Último de Equilibrio se debe satisfacer la condición:

Ed,desestab ≤ Ed,estab


Ed, estab: Valor de cálculo de los efectos de las Acciones Estabilizadoras.

Ed, desestab: Valor de cálculo de los efectos de las Acciones Desestabilizadoras.

Se incluyen bajo la denominación de Estados Límite de Servicio todas aquellas situaciones de la estructura para las que no se cumplen los requisitos de funcionalidad, de comodidad, de durabilidad o de aspecto requeridos.

PROYECTO DE CONSTRUCCIÓN: APARTADERO FERROVIARIO EN LA PLISÁN. 12
TT.MM. DE SALVATERRA DE MIÑO - AS NEVES (PONTEVEDRA).

Los ELS se pueden clasificar en Reversibles (dejan de ser superados cuando desaparece la acción que los provoca) e Irreversibles (aquellos que una vez superados se mantienen de forma permanente incluso si se elimina la acción que los ha provocado).

En la comprobación de los Estados Límite de Servicio se debe satisfacer la condición:

 $Ed \leq Cd$

Ed: Valor de cálculo del Efecto de las acciones.

Cd: Valor Límite Admisible para el estado límite a comprobar.

Según el Estado Límite a estudiar y para cada una de las Situaciones de Proyecto consideradas se establecerán las posibles Combinaciones de Acciones. Una Combinación de Acciones consiste en un conjunto de acciones compatibles que se considerarán actuando simultáneamente para una comprobación determinada.

Las Acciones a considerar pueden clasificarse dentro de los siguientes grupos:

- Acciones Permanentes (G): son aquellas que actúan en todo momento y son constantes en magnitud y posición para una situación de proyecto determinada.
- Acciones Permanentes de Valor No Constante (G*): son aquellas que actúan en todo momento pero cuya magnitud no es constante y varía de forma monótona.
- Acciones Variables (Q): son acciones externas a la estructura que pueden actuar o no, y, si lo hacen, pueden tener diferentes valores.
- Acciones Accidentales (A): son aquellas cuya probabilidad de actuación a lo largo de la vida útil de la estructura es pequeña pero presentan una magnitud importante. Los efectos Sísmicos pueden considerarse dentro de este tipo.

Cada combinación, como norma general, estará formada por las Acciones Permanentes, una Acción Variable Determinante y una o varias Acciones Variables Concomitantes. A priori cualquiera de las acciones variables puede ser determinante.

PROYECTO DE CONSTRUCCIÓN: APARTADERO FERROVIARIO EN LA PLISÁN. 13
TT.MM. DE SALVATERRA DE MIÑO - AS NEVES (PONTEVEDRA).

PS PO-400 - ANEJO DE CÁLCULO

Para los Estados Límite Últimos, las combinaciones de acciones se definirán de acuerdo con las siguientes expresiones:

En Situaciones Persistentes o Transitorias:

$$\sum_{i\geq 1} \gamma_{G,i} G_{k,i} + \sum_{m\geq 1} \gamma_{G,m} G_{k,m}^* + \gamma_{Q,1} Q_{k,1} + \sum_{i\geq 1} \gamma_{Q,i} \psi_{0,i} Q_{k,i}$$

donde:

G_{ki} valor característico de cada acción permanente

 G_{km}^{r} valor característico de cada acción permanente de valor no constante

Q_{k1} valor característico de la acción variable dominante

 $\psi_{0,i}$ $Q_{k,i}$ valor de combinación de las acciones variables concomitantes con la acción variable

dominante

 $\gamma_{G'}$ γ_{Q} coeficientes parciales

En Situaciones Accidentales:

$$\sum_{j\geq 1} G_{k,j} + \sum_{m\geq 1} G_{k,m}^* + \psi_{1,1} Q_{k,1} + \sum_{j\geq 1} \psi_{2,j} Q_{k,j} + A_d$$

donde:

G_{k,i} valor representativo de cada acción permanente

 $G_{k,m}^*$ valor representativo de cada acción permanente de valor no constante

 $\psi_{1,1}$ $Q_{k,1}$ valor frecuente de la principal acción variable concomitante con la acción accidental

 $\psi_{2,i} Q_{k,i}$ valor casi-permanente del resto de las acciones variables concomitantes

A_d valor de cálculo de la acción accidental

En Situaciones en las que actúa la Acción Sísmica:

$$\sum_{i\geq 1} G_{k,j} + \sum_{m\geq 1} G_{k,m}^* + \psi_{2,1} Q_{k,1} + A_{Ed}$$

donde:

G_{ki} valor representativo de cada acción permanente

G* valor representativo de cada acción permanente de valor no constante

 $\psi_{2,1}$ Q_{k,1} valor casi-permanente de la sobrecarga de uso (según tabla 6.1-a)

A_{Ed} valor de cálculo de la acción sísmica

PROYECTO DE CONSTRUCCIÓN: APARTADERO FERROVIARIO EN LA PLISÁN. 14
TT.MM. DE SALVATERRA DE MIÑO - AS NEVES (PONTEVEDRA).

Para los Estados Límite de Servicio se consideran únicamente las Situaciones de Proyecto Persistentes y Transitorias. En estos casos, las combinaciones de acciones se definirán de acuerdo con las siguientes expresiones:

Combinación Característica, Poco Probable o Rara:

$$\sum_{j\geq 1} \gamma_{G,j} G_{k,j} + \sum_{m\geq 1} \gamma_{G,m} G_{k,m}^* + \gamma_{Q,1} Q_{k,1} + \sum_{j\geq 1} \gamma_{Q,j} \psi_{0,j} Q_{k,j}$$

Combinación Frecuente:

$$\sum_{i\geq 1} \gamma_{G,j} G_{k,j} + \sum_{m\geq 1} \gamma_{G,m} G_{k,m}^* + \gamma_{Q,1} \psi_{1,1} Q_{k,1} + \sum_{i\geq 1} \gamma_{Q,i} \psi_{2,i} Q_{k,i}$$

Combinación Cuasipermanente:

$$\sum_{i \ge 1} \gamma_{G,j} G_{k,j} + \sum_{m \ge 1} \gamma_{G,m} G_{k,m}^* + \sum_{i \ge 1} \gamma_{Q,i} \psi_{2,i} Q_{k,i}$$

PS PO-400 - ANEJO DE CÁLCULO

3.3 Coeficientes de Ponderación de las Acciones

El Valor Característico de una Acción es su valor de referencia a efectos de Proyecto. Éste puede venir fijado por un valor medio, un valor nominal o, mediante criterios estadísticos, por un valor correspondiente a una determinada probabilidad de no ser superado durante un período de referencia determinado.

El Valor Representativo de una Acción es el valor de la misma utilizado para la comprobación de los diferentes Estados Límite. Viene determinado por su valor característico Fk o éste afectado de un coeficiente de simultaneidad ψ i.

-> Para las Acciones Permanentes, el valor representativo es igual a su Valor Característico.

En el caso del Peso del pavimento, tuberías u otros servicios soportados por la Estructura, se tomarán dos valores característicos (MÍN y MÁX,).

Para las Acciones Permanentes de Valor no Constante, el valor característico será el correspondiente al instante "t" en el que se realiza la comprobación.

-> Para las Acciones Variables, dependiendo del tipo de Estructura y de las Acciones que se consideren, pueden existir los siguientes Valores Representativos:

Valor de Combinación ψ 0 · Qk: Valor Representativo de las Acciones Variables que actúan simultáneamente con otra acción variable, considerada determinante, en combinaciones poco probables.

Valor Frecuente Ψ1 · Qk: Valor Representativo de la Acción Variable que sólo es sobrepasado durante períodos de corta duración respecto de la vida útil de la Estructura.

Valor Cuasi-Permanente Ψ2 · Qk: Valor Representativo de la Acción Variable que es sobrepasado durante una gran parte de la vida útil de la Estructura.

-> En general, para las Acciones Accidentales, el valor representativo es igual a su Valor Característico.

En el presente proyecto se adoptarán para los coeficientes de simultaneidad Wi los siguientes valores:

TABLA 6.1-a FACTORES DE SIMULTANEIDAD ψ

	ACCIÓN		ψ_0	ψ_1	ψ2
		Vehículos pesados	0,75	0,75	0
	gr 1, Cargas verticales	Sobrecarga uniforme	0,4	0,4	0 / 0,2(1
		Carga en aceras	0,4	0,4	0
Sobrecarga de uso	gr 2, Fuerzas horizontales		0	0	0
	gr 3, Peatones		0	0	0
	gr 4, Aglomeraciones		0	0	0
	Sobrecarga de uso en pas	arelas	0,4	0,4	0
		En situación persistente	0,6	0,2	0
Viento	F_{wk}	En construcción	0,8	0	0
		En pasarelas	0,3	0,2	0
Acción térmica	T_k		0,6	0,6	0,5
Nieve	$Q_{Sn,k}$	En construcción	0,8	0	0
Analda dal anco	W	Empuje hidrostático	1,0	1,0	1,0
Acción del agua	W_k	Empuje hidrodinámico	1,0	1,0	1,0
Sobrecargas de construcción	$Q_{\rm c}$		1,0	0	1,0

El factor de símultaneidad ψ₂ correspondiente a la sobrecarga uniforme se tomará igual a 0, salvo en el caso de la combinación de acciones en situación sísmica (apartado 6.3.1.3), para la cual se tomará igual a 0,2.

PS PO-400 - ANEJO DE CÁLCULO

El Valor de Cálculo de una Acción es el obtenido como producto del Valor Representativo por un Coeficiente Parcial de Seguridad para la Acción γ_F . Los coeficientes tendrán valores diferentes según la Situación de Proyecto de que se trate y del Estado Límite objeto de comprobación:

En el presente proyecto se adoptarán como coeficientes parciales para las acciones en las comprobaciones de los Estados Límite Últimos:

TABLA 6.2-b COEFICIENTES PARCIALES PARA LAS ACCIONES γ_F (PARA LAS COMPROBACIONES RESISTENTES)

	ACCIÓN	EF	ЕСТО
	ACCION	FAVORABLE	DESFAVORABLE
Permanente de valor cons-	Peso propio	1,0	1,35
tante (G)	Carga muerta	1,0	1,35
	Pretensado P ₁	1,0	1,0 / 1,2 ⁽¹⁾ / 1,3 ⁽²⁾
	Pretensado P ₂	1,0	1,35
	Otras presolicitaciones	1,0	1,0
Permanente de valor no constante (G*)	Reológicas	1,0	1,35
	Empuje del terreno	1,0	1,5
	Asientos	0	1,2 / 1,35(3)
	Rozamiento de apoyos deslizantes	1,0	1,35
	Sobrecarga de uso	0	1,35
	Sobrecarga de uso en terraplenes	0	1,5
Mariable (O)	Acciones climáticas	0	1,5
Variable (Q)	Empuje hidrostático	0	1,5
	Empuje hidrodinámico	0	1,5
	Sobrecargas de construcción	0	1,35

⁽¹⁾ El coeficiente γ_{G^*} = 1,2 será de aplicación al pretensado P_1 en el caso de verificaciones locales tales como la transmisión de la fuerza de pretensado al hormigón en zonas de anclajes, cuando se toma como valor de la acción el que corresponde a la carga máxima (tensión de rotura) del elemento a tesar.

⁽²⁾ El coeficiente γ_{G*} = 1,3 se aplicará al pretensado P₁ en casos de inestabilidad (pandeo) cuando ésta pueda ser inducida por el axil debido a un pretensado exterior.

El coeficiente γ_{G*} = 1,35 corresponde a una evaluación de los efectos de los asientos mediante un cálculo elasto-plástico, mientras que el valor γ_{G^*} = 1,2 corresponde a un cálculo elástico de esfuerzos.

En el presente proyecto se adoptarán como coeficientes parciales para las acciones en las comprobaciones de los Estados Límite de Servicio:

TABLA 6.2-c COEFICIENTES PARCIALES PARA LAS ACCIONES $\gamma_{\rm F}$ (ELS)

	Angión	EF	ЕСТО
	ACCIÓN	FAVORABLE	DESFAVORABLE
Permanente de valor	Peso propio	1,0	1,0
constante (G)	Carga muerta	1,0	1,0
	Pretensado P ₁	0,9(1)	1,1(1)
	Pretensado P ₂	1,0	1,0
	Otras presolicitaciones	1,0	1,0
Permanente de valor no constante (G*)	Reológicas	1,0	1,0
	Empuje del terreno	1,0	1,0
	Asientos	0	1,0
	Rozamiento de apoyos deslizantes	1,0	1,0
	Sobrecarga de uso	0	1,0
	Sobrecarga de uso en terraplenes	0	1,0
V : 11 10	Acciones climáticas	0	1,0
Variable (Q)	Empuje hidrostático	0	1,0
	Empuje hidrodinámico	0	1,0
	Sobrecargas de construcción	0	1,0

⁽¹⁾ Para la acción del pretensado se tomarán los coeficientes que indique la EHE-08 o normativa que la sustituya. En la tabla figuran los valores que la EHE-08 recoge para el caso de estructuras postesas. En el caso de estructuras pretesas, los coeficientes parciales son 0,95 y 1,05 para efecto favorable y desfavorable, respectivamente.

3.4 Coeficientes de Ponderación de Materiales y Geometría

Los valores de cálculo de las Propiedades de los Materiales (Rd) se obtienen dividiendo los valores característicos (Rk) por un Coeficiente Parcial de Seguridad para la Resistencia (γ m):

PROYECTO DE CONSTRUCCIÓN: APARTADERO FERROVIARIO EN LA PLISÁN. 19
TT.MM. DE SALVATERRA DE MIÑO - AS NEVES (PONTEVEDRA).

PS PO-400 - ANEJO DE CÁLCULO

$$R_d = \frac{R_k}{\gamma_N}$$

Los valores de los coeficientes parciales para la resistencia en la comprobación de los Estados Límite Últimos son los que se indican a continuación:

Tabla 15.3 Coeficientes parciales de seguridad de los materiales para Estados Límite Últimos

Situación de proyecto	Hormigón γ _e	Acero pasivo y activo γ _s
Persistente o transitoria	1,5	1,15
Accidental	1,3	1,0

Para la comprobación de los Estados Límite de Servicio se adoptarán como Coeficientes Parciales para la resistencia valores iguales a la Unidad (1.00).

Se adoptarán como Valores Característicos y de Cálculo de los datos geométricos, los valores nominales definidos en las Normas de Productos o en la Documentación de Proyecto:

$$a_k = a_d = a_{nom}$$

En algunos casos, cuando las imprecisiones relativas a la geometría tengan un efecto significativo sobre la resistencia de la Estructura, se tomará como Valor de Cálculo de los datos geométricos el siguiente:

$$a_d = a_{nom} + \Delta a$$

Donde Δa deberá tener en cuenta las posibles desviaciones desfavorables de los valores nominales y estará definido de acuerdo con las tolerancias establecidas en el Proyecto. El valor de Δa puede ser tanto negativo como positivo.

3.5 Programas Informáticos y Utilidades de Cálculo

Para el Cálculo Lineal y No Lineal de la estructura se ha utilizado el programa de Elementos Finitos 3D Robot Structural Analysis Professional (v2018) de Autodesk.

Para Cálculos a Nivel Seccional se han empleado:

- Prontuario Informático de las Estructuras Metálicas y Mixtas PIEM (v1.2.0.15).
- Prontuario Informático del Hormigón Estructural_EHE-08 (v3.1).

Además se utilizan diversas Aplicaciones y Hojas de Cálculo desarrolladas por el Proyectista.

Tanto los datos de partida como los resultados obtenidos son siempre verificados a través de comprobaciones manuales aproximadas que justifiquen los órdenes de magnitud.

PROYECTO DE CONSTRUCCIÓN: APARTADERO FERROVIARIO EN LA PLISÁN. 21

TT.MM. DE SALVATERRA DE MIÑO - AS NEVES (PONTEVEDRA).

PS PO-400 - ANEJO DE CÁLCULO

PROYECTO DE CONSTRUCCIÓN: APARTADERO FERROVIARIO EN LA PLISÁN. 22 TT.MM. DE SALVATERRA DE MIÑO - AS NEVES (PONTEVEDRA).

4. LOCALIZACIÓN, VIDA ÚTIL, DURABILIDAD Y MATERIALES

La Vida Útil de una Estructura se corresponde con el período de tiempo, a partir de la fecha de finalización de su ejecución, durante el cual debe cumplir la función para la que fue construida, contando siempre con un mantenimiento y conservación adecuadas pero sin requerir operaciones significativas de rehabilitación.

Para los Puentes de Carretera se establece una Vida Útil de Proyecto de CIEN (100)

A continuación se identifica y define el Tipo de Ambiente que caracterizará la agresividad a la que va a estar sometido cada elemento estructural:

> Localización de la Estructura de Proyecto:

PS PO-400 - ANEJO DE CÁLCULO

1) Clases de Exposición Ambiental (EHE-08):

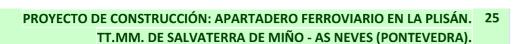
http://www.mfom.es/mfom.cea.web/pg_default.aspx?lang=es-ES

a) CLASE GENERAL DE EXPOSICIÓN: <u>IIa</u>

MUNICIPIO: SALVATERRA DE MIÑO; CLASE: IIA. Salvaterra de Miño Ver información Añadir al Informe Recubrimientos mínimos Relación a/c Resistencias mínimas Recubrimientos mínimos | Relación a/c | Resistencias mínimas Recubrimiento mínimo (mm) para la Clase de exposición IIa 25 <= fck < 40 fck >= 40

MUNICIPIO : NEVES (AS) ; CLASE : IIA .

Neves (As)		Ver información	Añadir al Informe
------------	--	-----------------	-------------------


Resistencia característica del	Tipo de cemento	Vida útil de pro	oyecto
hormigón (N/mm2)	Tipo de Cemento	50 años	100 años
25 <= fdk < 40	CEMI	15	25
fck >= 40		10	20
25 <= fdk < 40	Otros tipos de cemento o en el caso de empleo de	20	30
fdk >= 40	adiciones al hormigón	15	25

Parametro de dosificación	Tipo de Hormicón	Clase de Exposición		
Parametro de dosinicación	Tipo de Hormagon	Пэ		
	masa	-		
náxima relación a/c	armado	0,60		
	pretensado	0,60		
	masa	-		
inimo contenido de emento cemento (kg/m²)	armado	275		
	pretensado	300		
esistencias mínimas compa	tibles con los requisitos	de durabilidad		
erámetro de desificación	Total Inc.	Clase de Exposición		

Parámetro de desificación		Clase de Exposición
Parametro de bositicación	tipo de Homagon	Па
	nuca	7.1
resistencia minima [N/mm²]	armado	25
Section 1	pretensado	25

PS PO-400 - ANEJO DE CÁLCULO

2) Valores Climatológicos Normales (AEMET):

http://www.aemet.es/es/serviciosclimaticos/datosclimatologicos/valoresclimatologicos

	itud (m) 108											
Latitud: 42° 26' 18" N - Lo	ongitud: 8° 36′ 57′	Q - Pos	ición	Ver loca	lizació	n						
											Export	tár
Mes	Ī	TM	Tm	R	Н	DR	DN	DT	DF	DH	DD	
Enero	9.6	12.9	6.3	178	77	14.3	0.1	1.3	2.0	0.6	6.5	1
Febrero	10.4	14.2	6.5	133	72	11.3	0.0	0.8	1.8	0.4	6.1	
Marzo	12.4	16.9	7.8	120	68	11.2	0.0	1.1	1.5	0.2	7.5	
Abril	13.0	17.6	8.4	143	69	14.2	0.0	1.2	1.9	0.0	5.7	1
Mayo	15.8	20.6	10.9	118	69	12.0	0.0	2.2	1.9	0.0	5.2	
Junio	18.6	23.8	13.4	64	67	7.0	0.0	8.0	2.6	0.0	9.2	
Julio	20.4	25.9	14.9	44	67	5.1	0.0	0.7	3.1	0.0	12.7	
Agosto	20.6	26.0	15.2	56	68	5.5	0.0	0.8	3.7	0.0	10.8	
Septiembre	18.8	23.7	13.8	95	72	8.4	0.0	0.9	4.2	0.0	9.2	
Octubre	15.7	19.6	11.7	224	76	13.6	0.0	1.5	3.1	0.0	6.1	
Noviembre	12.1	15.4	8.7	222	78	14.1	0.0	1.3	2.7	0.0	6.0	
Diciembre	10.3	13.4	7.1	216	77	14.4	0.0	1.2	2.9	0.5	7.2	Sign
Año	14.8	19.2	10.4	1613	72	131.3	0.2	13.9	31.9	1.8	92.5	73

Periodo: 1981-2010 - Altitud (m) 261

Latitud: 42° 14' 19" N - Longitud: 8° 37' 26" Q - Posición: Ver localización

											Expo	rtar a csv
Mes		TM				DR	DN	DT	DF	DH	DD	
Enero	8.6	11.9	5.4	208	84	14.0	0.1	1.1	10.9	1.7	6.3	114
Febrero	9.6	13.3	5.8	162	78	11.7	0.2	0.8	7.3	0.9	5.9	131
Marzo	11.5	15.7	7.3	141	73	11.6	0.1	0.7	7.2	0.3	7.4	178
Abril	12.4	16.6	8.2	157	73	13.5	0.0	1.9	7.0	0.0	5.0	193
Mayo	14.6	18.8	10.4	127	73	12.4	0.0	2.6	8.2	0.0	5.0	228
Junio	17.9	22.5	13.2	62	71	6.9	0.0	1.1	7.6	0.0	9.4	273
Julio	19.6	24.4	14.8	44	71	5.0	0.0	0.8	9.0	0.0	11.7	296
Agosto	19.8	24.7	15.0	45	71	4.7	0.0	0.9	9.5	0.0	11.8	287
Septiembre	18.3	22.8	13.8	102	74	7.8	0.0	0.9	9.1	0.0	9.1	212
Octubre	15.0	18.8	11.2	231	81	13.1	0.0	1.4	10.8	0.0	5.5	154
Noviembre	11.5	14.9	8.2	246	84	13.1	0.0	1.2	10.7	0.1	5.0	112
Diciembre	9.3	12.4	6.3	262	84	15.1	0.1	1.8	11.1	0.8	6.8	101
Año	14.0	18.0	9.9	1791	77	129.2	0.5	15.3	107.4	3.8	88.9	226

Leyenda

T Temperatura media mensual/anual (°C)

TM Media mensual/anual de las temperaturas máximas diarias (°C)

Tm Media mensual/anual de las temperaturas mínimas diarias (°C)

R Precipitación mensual/anual media (mm)

H Humedad relativa media (%)

DR Número medio mensual/anual de días de precipitación superior o igual a 1 mm

DN Número medio mensual/anual de días de nieve

DT Número medio mensual/anual de días de tormenta

DF Número medio mensual/anual de días de niebla

DH Número medio mensual/anual de días de helada DD Número medio mensual/anual de días despejados


I Número medio mensual/anual de horas de sol

PROYECTO DE CONSTRUCCIÓN: APARTADERO FERROVIARIO EN LA PLISÁN. 26 TT.MM. DE SALVATERRA DE MIÑO - AS NEVES (PONTEVEDRA).

3) Peligrosidad Sísmica (NCSP-07):

NOTA 1: El Municipio de Salvaterra de Miño se encuentra localizado en una zona cuya ab < 0.04g, por lo que NO resulta necesario considerar las Acciones Sísmicas para el cálculo de la Estructura.

NOTA 2: El Municipio de As Neves se encuentra localizado en una zona cuya ab = 0.04g, por lo que resulta necesario considerar las Acciones Sísmicas para el cálculo de la Estructura.

NOTA 3: El Perfil Estratigráfico en la Ubicación de la Estructura resulta:

- 0 - 20 m: Suelo Granular Denso (TIPO II)

-20 - 30m: Granular Muy Denso/Roca (TIPO I)

PROYECTO DE CONSTRUCCIÓN: APARTADERO FERROVIARIO EN LA PLISÁN.

TT.MM. DE SALVATERRA DE MIÑO - AS NEVES (PONTEVEDRA).

PS PO-400 - ANEJO DE CÁLCULO

2) ACELERACIÓN SÍSMICA DE CÁLCULO

= 1.00

- construcciones de importancia normal $\rho = 1,0$.
- construcciones de importancia especial ρ = 1,3.

C = 1.2

- Terreno tipo I: Roca compacta, suelo cementado o granular muy denso.
- Terreno tipo II: Roca muy fracturada, suelos granulares densos o cohesivos duros.
- Terreno tipo III: Suelo granular de compacidad media, o suelo cohesivo de consistencia firme a muy firme.
- Terreno tipo IV: Suelo granular suelto, o suelo cohesivo blando.

Tipo de terreno	Coeficiente C
1	1,0
11	1,3
III	1,6
IV	2,0

Para obtener el valor del coeficiente C de cálculo se determinarán los espesores e_1 , e_2 , e_3 y e_4 de terrenos de los tipos I, II, III y IV respectivamente, existentes en los 30 primeros metros bajo la superficie.

Se adoptará como valor de C el valor medio obtenido al ponderar los coeficientes C_i de cada estrato con su espesor e_a en metros, mediante la expresión:

$$C = \frac{\sum C_i \cdot e}{30}$$

S = 0.96

ACELERACIÓN SÍSMICA CÁLCULO: ac/g 0.038

NOTA: Con estas premisas la aceleración de cálculo (ac) resulta inferior a 0.04g por lo que NO RESULTA NECESARIO considerar la Acción Sísmica en el cálculo de la Estructura.

c) CARACTERIZACIÓN DE ELEMENTOS ESTRUCTURALES:

MATERIAL	ELEMENTOS:	DESIGNACION	NIVEL DE CONTROL	COEF. DE SEGURIDAD	RECUBRIMIENTO NOWINAL (mm)	MÁX. RELACIÓN AGUA/CEM (o/c)	MIN. CONTENIDO CEMENTO (kg/m3)	TIPO CEMENTO
	CAPAS DE REGULARIZACIÓN	HL-150/P/20	NO ESTRU	CTURAL		0.65		CEMIT
HORMIGDNES	VIGAS PREFABRICADAS	HP-50/F/12/No			20+0	0.60	300	CEM 1
	PRELOSAS ENCOFRADO	HP-35/P/12/lis			25+0	0.60	300	CEM 1
	LOSA IN SITU	HA-25/B/20/lia	O leader to reason and	Ŏc−1,50	25+5	0,60	275	CEW I
	ALZADO DE PILAS	HA-30/B/20/IIq	ESTADÍSTICO	(ELU)	25+5	0.60	275	CEM 1
	ALZADO DE ESTRIBOS	HA-25/B/20/IIq			25+5	0.60	275	CEM 1
	ZAPATAS DE PILAS Y ESTRIBOS	HA-25/8/20/lig			25+6	0.60	275	CEM 1
ACERG ACTIVO	VIGAS PREFABRICADAS	Y 1880 S7	NORMAL	Øs=1,15 (EUU)				
ACERO PASIVO	TODA LA GBRA	B 500 S	NORMAL	Øs+1,15 ⟨ELU⟩				
EJECUCIÓN	TODA LA OBRA		INTENSO	S/IAP-11				

⁻ PARA GARANTIZAR LOS RECUBRIMIENTOS EXIGIDOS DE LAS ARMADURAS SE LITUZARÁN SEPARADORES DE MORTERO DE CEMENTO

PS PO-400 - ANEJO DE CÁLCULO

PROYECTO DE CONSTRUCCIÓN: APARTADERO FERROVIARIO EN LA PLISÁN. 30 TT.MM. DE SALVATERRA DE MIÑO - AS NEVES (PONTEVEDRA).

5. RESUMEN FINAL Y CONCLUSIONES

El presente Documento supone el Anejo de Cálculo de Estructuras del "PROYECTO DE CONSTRUCCIÓN: APARTADERO FERROVIARIO A LA PLISÁN. TT.MM. SALVATERRA DE MIÑO - AS NEVES (PONTEVEDRA)". El estudio se realiza por NETO Ingeniería en colaboración con GPO GROUP y GALAICONTROL.

Con todo lo expuesto en el Documento, de acuerdo al leal saber y entender del Autor, se consideran suficientemente justificadas tanto la Solución Técnica adoptada como el Cálculo Estructural de la misma. Queda por tanto el Documento gustosamente sometido a aprobación por cualquier otro Sujeto de experiencia mejor fundada.

En A Coruña, 23 de NOVIEMBRE de 2018.

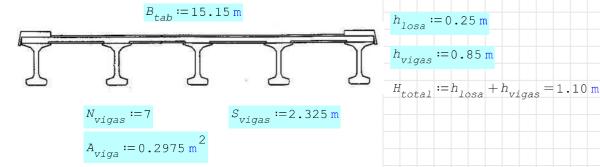
David Marcos Fraguela

Ingeniero de Caminos, Canales y Puertos

PS PO-400 - ANEJO DE CÁLCULO

PS PO-400 - ANEJO DE CÁLCULO

ANEJO Nº 1: ACCIONES CONSIDERADAS EN EL CÁLCULO


ACCIONES TABLERO VIGAS DOBLE T CARRETERA

S/ IAP-11

1. ACCIONES PERMANENTES SOBRE EL TABLERO (G)

1.1 PESO PROPIO

Esta acción se corresponde con el peso de los Elementos ESTRUCTURALES y su valor caract rístico se deduce de las dimensiones de los elementos especificados en los planos y de pesos específicos correspondientes.

Peso de VIGAS Prefabricadas: $W_{vigas} := A_{viga} \cdot 25.0 \frac{kN}{3} = 7.44$

Peso de LOSA Tablero:

$$W_{losa} := h_{losa} \cdot 25.0 \frac{\text{kN}}{\text{m}} = 6.25 \frac{\text{kN}}{\text{m}}$$

1.2 CARGAS MUERTAS

Son las debidas a los Elementos NO ESTRUCTURALES que gravitan sobre los estructurales.

El espesor máximo de Pavimento Bituminoso Proyectado será: e = 6.0 cm

$$B_{plat} := 10.00 \text{ m}$$

Peso de PAVIMENTO:

$$CM_{pav_MIN} := e_{pav} \cdot 23.0 \frac{kN}{m} = 1.38 \frac{kN}{m}$$

$$CM_{pav_MAX} := 1.5 \cdot CM_{pav_MIN} = 2.07 \frac{kN}{2}$$

Las aceras existentes presentan unas dimensiones iguales a: $B_{acera} := 2.575 \,\mathrm{m}$ $N_{acera} := 2$

$$h_{acera} := 0.15 \text{ m}$$

Peso de ACERAS:

$$CM_{acera} := h_{acera} \cdot 25.0 \frac{\text{kN}}{\text{m}^3} = 3.75 \frac{\text{kN}}{\text{m}^2}$$

Peso del SISTEMA de CONTENCIÓN: CMpretil := 5.00 m

$$CM_{pretil} := 5.00 \frac{\text{kN}}{\text{m}}$$

CARGA PERMANENTE TOTAL:

$$\frac{CM_{sup} = 196.76 \frac{\text{kN}}{\text{m}}}{CM_{inf} = 189.86 \frac{\text{kN}}{\text{m}}}$$

1 / 12

2. ACCIONES PERMANENTES DE VALOR NO CONSTANTE (G*)

2.1 PRETENSADO

Las Acciones producidas por el Pretensado se valorarán teniendo en cuenta la forma de ir troducción de las mismas y las posibilidades de deformación de la estructura.

En este caso al tratarse de un Tablero de Vigas Prefabricadas Pretensadas se considera 6 pretensado como una acción TIPO 1 y se calcula de manera individualizada para cada viga particular a partir de una Hoja de Cálculo de elaboración propia.

2.2 RETRACCIÓN DEL HORMIGÓN (S/ ART° 39.7 EHE-08)

Para la evaluación de la Retracción han de tenerse en cuenta: el grado de humedad ambien el espesor o mínima dimensión de la pieza, la composición del hormigón y el tiempo trans rrido desde la ejecución, que marca la duración del fenómeno.

a) Caso Losa de Tablero: $f_{cklosa} := 25.0 \text{ MPa}$ CEM ENDUREC NORMAL: $\alpha_{ds1losa} := 4 - \alpha_{ds2losa} := 0.12$ $e_{losa} := 250 \text{ mm}$

HR := 75.0

$$eta_{dslosa} = 1.00$$
 $k_{elosa} = 0.80$ $\varepsilon_{cdoolosa} = -0.338 \frac{mm}{m}$ $\varepsilon_{caoolosa} = -0.038 \frac{mm}{m}$

RETRACCIÓN LOSA A TIEMPO INFINITO (T=100años): $\varepsilon_{losa} = -0.307 \frac{mm}{m}$

b) Caso Vigas de Tablero: $f_{ckviga} := 50.0 \text{ MPa}$ CEM ENDUREC RÁPIDO: $\alpha_{ds1viga} := 6$ $\alpha_{ds2viga} := 0.11$

$$e_{viga} \coloneqq \text{150 mm}$$

$$HR = 75.0$$

NOTA: Se considera que las Vigas se colocan en Obra a una Edad = 30d

$$\beta_{dsviga} = 0.76 \quad k_{eviga} = 1.00 \quad \varepsilon_{cdooviga} = -0.354 \frac{\text{mm}}{\text{m}}$$

$$\beta_{asviga} = 1.00 \quad \varepsilon_{caooviga} = -0.100 \frac{\text{mm}}{\text{m}}$$

2/12

RETRACCIÓN VIGAS A TIEMPO INFINITO (T=100años): $\varepsilon_{viga} = -0.369 \frac{mm}{m}$

RETRACCIÓN CONJUNTA del Tablero a TIEMPO INFINITO (T=100AÑOS)

2.3 FLUENCIA DEL HORMIGÓN (S/ART° 39.8 EHE-08)

Se desarrolla a continuación el cálculo del Coeficiente de Fluencia bajo cargas permanen para las vigas prefabricadas del tablero:

NOTA 1: Se considera como Edad de TESADO (to) para las Vigas Pretensadas = 3d

NOTA 2: Se considera la fluencia a partir de la Colocación en Obra de las Vigas = 30d

Coeficiente Básico de Fluencia:

Desarrollo de la Fluencia con el Tiempo:

COEF. FLUENCIA de las Vigas (PRETENSADO) A TIEMPO INFINITO (T=100años): $\varphi_{vigaoo} = 1.16$

La Deformación de Fluencia, debida al Pretensado de las Vigas, puede estimarse para una edad de puesta en carga de to=3 días de acuerdo con el criterio siguiente:

$$\varepsilon_{c\sigma}(t,t_0) = \sigma(t_0) \left(\frac{1}{E_{c,t_0}} + \frac{\varphi(t,t_0)}{E_{c,28}} \right)$$

El primer sumando representa la Deformación Instánea y el segundo la Diferida debido al efecto de la Fluencia.

1) Deformación Inicial debida al Pretensado (descontadas las Pérdidas iniciales) resulta

$$f_{cmviga3} = 38.45 \text{ MPa}$$
 $E_{cmviga3} = 29086 \text{ MPa}$

$$\varepsilon_{\textit{Pins}} := \frac{\Delta \sigma_{\textit{Pins}}}{E_{\textit{cmviga3}}} = -0.399 \, \frac{\text{mm}}{\text{m}}$$

2) Deformación Diferida en el tiemnpo debida a la Fluencia resulta:

$$\varepsilon_{fluviga} \coloneqq \varepsilon_{Pins} \cdot \frac{E_{cmviga3}}{E_{csviga}} \cdot \varphi_{vigaoo} = -0.348 \, \frac{\text{mm}}{\text{m}} \qquad f_{cmviga} = 58.00 \, \text{MPa} \qquad E_{cmviga} = 32902 \, \text{MPa}$$

3 / 12

$$E_{csviga} = 38660 \, \text{MPa}$$

FLUENCIA VIGAS A TIEMPO INFINITO (T=100años): $\varepsilon_{fluviga} = -0.348 \frac{\text{mm}}{\text{m}}$

FLUENCIA CONJUNTA del Tablero a TIEMPO INFINITO (T=100AÑOS)

3. ACCIONES VARIABLES (Q)

3.1 SOBRECARGA DE USO - ACCIONES VERTICALES

a) División de la Plataforma en CARRILES VIRTUALES:

TABLA 4.1-a DEFINICIÓN DE LOS CARRILES VIRTUALES

ANCHURA DE LA PLATAFORMA (W)	NÚMERO DE CARRILES VIRTUALES (n _i)	ANCHURA DEL CARRIL VIRTUAL (w _i)	ANCHURA DEL ÁRE REMANENTE		
w < 5,4 m	<i>n_i</i> = 1	3 m	w – 3 m		
5,4 m ≤ w < 6 m	n _i = 2	<u>w</u> 2	0		
w ≥ 6 m	$n_i = ent\left(\frac{w}{3}\right)$	3 m	w - 3n _i		
$B_{plat} = 10.00 \mathrm{m}$	$N_{carr} = 3$	$\overline{W}_{carril} = 3.00 \mathrm{m}$	$B_{rem} = 1.00 \text{ m}$		

b) Cargas Verticales debidas al Tráfico de Vehículos:

TABLA 4.1-b	VALOR CARACTERÍSTICO DE LA SO	BRECARGA DE USO
SITUACIÓN	VEHICULO PESADO 20 _{ik} [kN]	SOBRECARGA UNIFORME q_{ik} (6 q_{rk}) [kN/m²]
Carril virtual 1	2 - 300	9,0
Carril virtual 2	2 - 200	2,5
Carril virtual 3	2 · 100	2,5
Otros carriles virtuales	Ō	2,5
Área remanente (q _a)	0	2,5

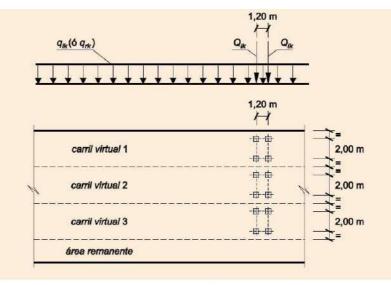
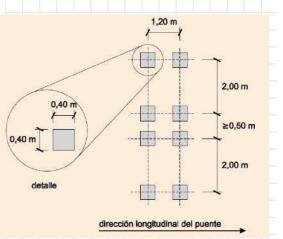



FIGURA 4.1-b DISTRIBUCIÓN DE VEHÍCULOS PESADOS Y SOBRECARGA UNIFORME

c) Cargas Verticales en Zonas de Uso Peatonal:

En zonas de Uso Peatonal (aceras, rampas y escaleras) se supondrá aplicada una sobrecare uniforme en las zonas más deesfavorables (longitudinal y transversalmente) de valor:

$$Q_{peat} := 5.00 \frac{kN}{m^2}$$

3.2 SOBRECARGA DE USO - ACCIONES HORIZONTALES

a) FRENADO y ARRANQUE:

El frenado, arranque o cambio de velocidad dará lugar a una fuerza horizontal uniformemo distribuida en la dirección longitudinal de la carretera soportada por el Puente y se su drá aplicada al nivel de la superficie del pavimento:

Longitud TOTAL de Aplicación: $L_{fren} := 34.50 \,\mathrm{m}$

$$L_{fren} := 34.50 \text{ m}$$

$$Q_{FREN} = 453.2 \text{ kN}$$
 $FREN_{MAX} = 900 \text{ kN}$

$$FREN_{MIN} = 180 \text{ kN}$$

ACCIÓN HORIZONTAL DEBIDA AL FRENADO Y ARRANQUE:

$$\frac{Q_{FREN}}{L_{fren}} = 13.13 \frac{\text{kN}}{\text{m}}$$

b) FUERZA CENTRÍFUGA:

En Puentes de planta curva, los vehículos generan una fuerza transversal centrígua cons rada como una fuerza que actúa en dirección perpendicular al eje del tablero y se supono aplicada al nivel de la superficie del pavimento:

Radio de Curvatura del Puente en Planta: Rad := 5000 m

$$Rad := 5000 \text{ m}$$

Longitud TOTAL de Aplicación:

$$L_{cent} := 34.50 \text{ m}$$

 $Q_{CENT} = 0.0 \text{ kN}$

ACCIÓN HORIZONTAL DEBIDA A LA FUERZA CENTRÍFUGA:

$$\frac{Q_{CENT}}{L_{Cent}} = 0.00 \frac{\text{kN}}{\text{m}}$$

3.3 CARGA DE NIEVE

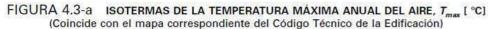
En general, sólo será necesario considerar la sobrecarga de nieve en puentes situados er zonas de alta montaña o durante la fase de construcción.

a) Sobrecarga de Nieve sobre un Terreno Horizontal:

FIGURA 4.3-b ZONAS CLIMÁTICAS DE INVIERNO (Coincide con el mapa correspondiente del Código Técnico de la Edificación)

TABLA 4.4-a SOBRECARGA DE NIEVE EN UN TERRENO HORIZONTAL, S. [kN/m²] (Coincide con la tabla correspondiente del Código Técnico de la Edificac

ZONA DE CLIMA INVERNAL (SEGÚN FIGURA 4.3-b)								
ALTITUD [M]								
0	0,3	0,4	0,2	0,2	0,2	0,2	0,2	
200	0,5	0,5	0,2	0,2	0,3	0,2	0,2	
400	0,6	0,6	0,2	0,3	0,4	0,2	0,2	
500	0,7	0,7	0,3	0,4	0,4	0,3	0,2	
600	0,9	0,9	0,3	0,5	0,5	0,4	0,2	
700	1,0	1,0	0,4	0,6	0,6	0,5	0,2	
800	1,2	1,1	0,5	0,8	0,7	0,7	0,2	
900	1,4	1,3	0,6	1,0	8,0	0,9	0,2	
1000	1,7	1,5	0,7	1,2	0,9	1,2	0,2	
1200	2,3	2,0	1,1	1,9	1,3	2,0	0,2	
1400	3,2	2,6	1,7	3,0	1,8	3,3	0,2	
1600	4,3	3,5	2,6	4,6	2,5	5,5	0,2	
1800	2	4,6	4,0	22	ě	9,3	0,2	
2200	2	8,0		123	2	(S)	8	


ZONA CLIMÁTICA: ZONA := 1

ALTITUD: ALT := 200 m

b) Sobrecarga de Nieve en Tableros:

Valor característico de Sobrecarga de NIEVE en Tableros se tomará: $NV:=0.8 \cdot s_{\nu}=0.40$

Los valores característicos de la Temperatura Máxima/Mínima del aire a la sombra, para u período de Retorno de 50 años, dependen del clima del lugar y de su altitud y resultan:

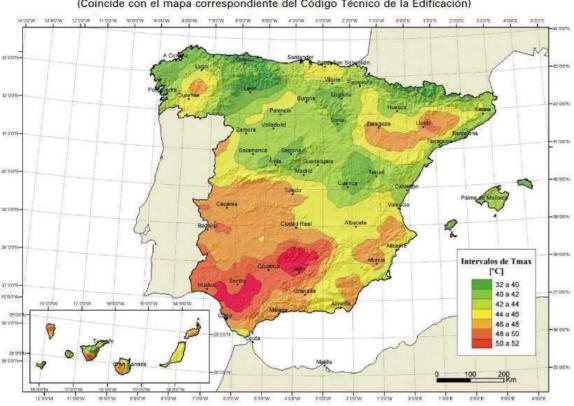


TABLA 4.3-a TEMPERATURA MÍNIMA ANUAL DEL AIRE, T_{min} [$^{\circ}$ C] (Coincide con la tabla correspondiente del Código Técnico de la Edificación)

 $T'_{max50} := 44$

ALTITUD [m]		ZONA	DE CLIMA IN	IVERNAL (SE	gún figur <i>i</i>	A 4.3-b)		
ALITIOD (III)			3	4			7	
0	-7	-11	-11	-6	-5	-6	6	
200	-10	-13	-12	-8	-8	-8	5	
400	-12	-15	-14	-10	-11	-9	3	
600	-15	-16	-15	-12	-14	-11	2	
800	-18	-18	-17	-14	-17	-13	0	
1000	-20	-20	-19	-16	-20	-14	-2	
1200	-23	-21	-20	-18	-23	-16	-3	
1400	-26	-23	-22	-20	-26	-17	-5	ZONA = 1
1600	-28	-25	-23	- <mark>22</mark>	-29	-19	-7	ALT = 200 m
1800	-31	-26	-25	-24	-32	-21	-8	
2000	-33	-28	-27	-26	-35	-22	-10	$T_{min50} := -10$

b) Componente Uniforme de la Temperatura:

La Temperatura Efectiva o temperatura media de la sección transversal, tendrá un valor Mínimo y Máximo de acuerdo con:

TABLA 4.3-b VALORES DE $\Delta T_{e,min}$ Y $\Delta T_{e,max}$ Para el cálculo de la componente uniforme de temperatura

TIPO DE TABLERO	<i>ΔT_{e,min}</i> [°C]	$\Delta T_{\rm e,max}$ [°C]
Tipo 1: Tablero de acero	-3	+16
Tipo 2: Tablero mixto	+4	+4
Tipo 3: Tablero de hormigón	+8	+2

 $\Delta T_{\text{emin}} := +8 \qquad \qquad \Delta T_{\text{emax}} := +2$

Corrección según elPeríodo de Retorno (100años):

$$T_{min100} := T_{min50} \cdot \left[0.393 - 0.156 \cdot \ln \left(-\ln \left(1 - \frac{1}{100} \right) \right) \right] = -11$$

$$T_{max100} := T_{max50} \cdot \left[0.781 - 0.056 \cdot \ln \left(-\ln \left(1 - \frac{1}{100} \right) \right) \right] = 46$$

Los Valores Característicos resultan: $T_{emin} := T_{min100} + \Delta T_{emin} = -3$

$$T_{\text{emax}} := T_{\text{max}100} + \Delta T_{\text{emax}} = 48$$

c) Rango de la Componente Uniforme de la Temperatura:

Rango Total Característico de variación de la Componente de Temperatura en el Tablero:

$$\Delta T_N := T_{\text{emax}} - T_{\text{emin}} = 51$$

Temperatura Inicial del Elemento: $T_o := 15$

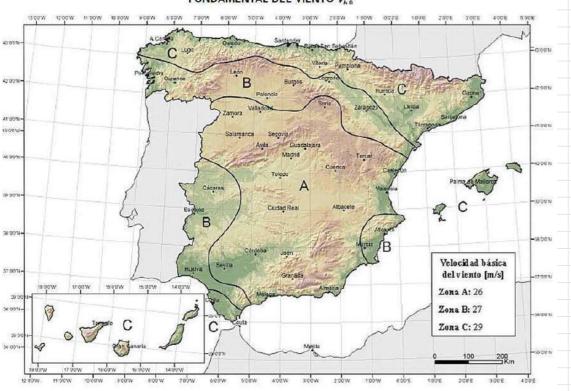
d) Rango de CONTRACCIÓN/DILATACIÓN del Tablero:
$$\Delta T_{CON} \coloneqq T_o - T_{emin} = 18$$

$$\Delta T_{DIL} := T_{emax} - T_{o} = 33$$

d) Rango de CONTRACCIÓN/DILATACIÓN del Tablero:

El dimensionamiento de los Apoyos y Juntas de Dilatación se realizará considerando:

CONTRACCIÓN MÁXIMA del Tablero: $\boxed{CONTRACCIÓN := -\Delta T_{CON} - 15 = -33.1}$


 $\varepsilon_{CON} := \frac{CONTRACCIÓN}{100000} = -0.331 \, \frac{\text{mm}}{\text{m}}$

DILATACIÓN MÁXIMA del Tablero: $DILATACIÓN := \Delta T_{DIL} + 15 = 47.7$

$$\varepsilon_{DIL} := \frac{DILATACIÓN}{100000} = 0.477 \frac{mm}{m}$$

CVE: 6XUOYityzEF9 Verificación: https://sede a) Velocidad Básica del Viento:

Velocidad Básica (Período de Retorno de T=100años): $V_{b100} := 1.04 \cdot C_{dir} \cdot C_{seas} \cdot V_{bo} = 28.1 \frac{m}{s}$

b) Ubicación de la Estructura:

Factor de Topografía: $C_0 := 1.00$

Factor de Turbulencia: $k_1 := 1.00$

 $V_{bo} := 27.0 \frac{\text{m}}{\text{m}}$

 $C_{dir} := 1.00$

 $C_{seas} := 1.00$

Factor de Rugosidad del Terreno (según el Entorno considerado):

- Tipo 0: mar o zona costera expuesta al mar abierto.
- Tipo I: lagos o áreas planas y horizontales con vegetación despreciable y sin obstáculos.
- Tipo II: zona rural con vegetación baja y obstáculos aislados, (árboles, construcciones pequeñas, etc.), con separaciones de al menos 20 veces la altura de los obstáculos.
- Tipo III: zona suburbana, forestal o industrial con construcciones y obstáculos aislados con una separación máxima de 20 veces la altura de los obstáculos.
- Tipo IV: zona urbana en la que al menos el 15% de la superficie esté edificada y la altura media de los edificios exceda de 15 m.

TABLA 4.2-b COEFICIENTES k, Z₀, Y Z_{min} SEGÚN EL TIPO DE ENTORNO

TIPO DE ENTORNO	k,	z _o (m)	z _{mir} [m]
0	0,156	0,003	1
Ť	0,170	0,01	1
П	0,190	0,05	2
Ш	0,216	0,30	5
IV	0,235	1,00	10

CVE: 6XUOYityzEF9 Verificación: https://sede c) Empuje Unitario del Viento sobre el Tablero:

Consideramos una Altura Promedio del Tablero igual a: $Z_{tab} := 6.50 \,\mathrm{m}$

Presión de la Velocidad de Viento: $q_w := \left(\frac{1}{2} \cdot 1.25 \cdot \frac{\text{kg}}{\text{m}^3} \cdot V_{b100}^{2}\right) = 0.49 \cdot \frac{\text{kN}}{\text{m}^2}$

Coeficiente de Exposición (Ztab): $C_{etab} = 2.09$

Luego la PRESIÓN de VIENTO sobre el Tablero resulta: $W_{tab} := q_w \cdot C_{etab} = 1.03 \frac{kl}{m}$

d.1) VIENTO TRANSVERSAL sobre el Tablero: CASO DE VIENTO SIN SOBRECARGA

Anchura del Tablero: $B_{tab} = 15.15 \,\mathrm{m}$

Peralte del Tablero (%): per:=0

Canto del Tablero: $H_{tab} := h_{vigas} + h_{losa} = 1.10 \text{ m}$

Altura de la Barrera_IMPERMEABLE: $h_{barr} := 0.00 \,\mathrm{m}$

Altura Equivalente SIN SOBRECARGA: $H_{eqsin} := H_{tab} + B_{tab} \cdot \left(\frac{per}{100}\right) + h_{barr} = 1.10 \text{ m}$

Coef. Fuerza del Tablero: $C_{fsin} = 1.30$

EMPUJE S/TABLERO: $F_{tabsin} := W_{tab} \cdot C_{fsin} \cdot H_{eqsin} = 1.47 \frac{\text{kN}}{\text{m}}$

Vigas Ocultas Bajo Tablero: $N_{vigas} - 1 = 6$

Coef. Fuerza de las Vigas: $C_{fvigas} := 2.2$

Canto Vigas: $h_{vigas} = 0.85 \,\mathrm{m}$

Separación MÁXIMA entre Vigas: $S_{vigas} = 2.33 \,\mathrm{m}$

Relación de Solidez Vigas: $\lambda_{vigas} := 1.00$

Espaciamiento Relativo Vigas SOTAVENTO: $s_{vigas} \coloneqq \frac{s_{vigas}}{h_{vigas}} = 2.7 \quad \eta_{vigas} \coloneqq 0.28$

TABLA 4.2-c COEFICIENTE DE OCULTAMIENTO η

ESPACIAMIENTO	RELACIÓN DE SOLIDEZ X								
RELATIVO s,		0,2	0,3	0,4		≥0,6			
0,5	0,75	0,40	0,31	0,22	0,13	0,06			
1	1,00	0,82	0,64	0,46	0,28	0,10			
2	1,00	0,84	0,68	0,52	0,36	0,20			
3	1,00	0,86	0,72	0,59	0,45	0,31			
4	1,00	0,89	0,78	0,68	0,57	0,46			
5	1,00	1,00	0,92	0,85	0,77	0,69			
6	1,00	1,00	1,00	1,00	1,00	1,00			

 $\text{EMPUJE S/VIGAS:} \quad F_{vigas} := W_{tab} \cdot C_{fvigas} \cdot \eta_{vigas} \cdot \left(N_{vigas} - 1\right) \cdot h_{vigas} = 3.23 \, \frac{\text{kl}}{\text{m}}$

Barreras del Tablero: $N_{barr} := 2$

Área Expuesta al Viento Barrera: $A_{refbarr} := 0.30 \frac{m^2}{m}$

Coef. Fuerza de la Barrera: $C_{fbarr} \coloneqq 2.2$

EMPUJE S/BARRERAS: $F_{barr} := W_{tab} \cdot C_{fbarr} \cdot N_{barr} \cdot A_{refbarr} = 1.36 \frac{\text{kN}}{\text{m}}$

 $W_{totsin} := F_{tabsin} + F_{vigas} + F_{barr} = 6.05 \frac{\text{kN}}{\text{m}}$

Altura de la SOBRECARGA: $h_{SC} := 2.00 \,\mathrm{m}$

Altura Equivalente SIN SOBRECARGA: $H_{eggc} := H_{tab} + h_{gc} = 3.10 \text{ m}$

Coef. Fuerza del Tablero: $C_{fsc} = 1.30$

EMPUJE S/TABLERO: $F_{tabsc} := W_{tab} \cdot C_{fsc} \cdot H_{eqsc} = 4.14 \frac{\text{kN}}{\text{m}}$

EMPUJE S/VIGAS: $F_{vigas} = 3.23 \frac{\text{kN}}{\text{m}}$

EMPUJE S/BARRERAS: $F_{barr} = 1.36 \frac{\text{kN}}{\text{m}}$

 $W_{totsc} := F_{tabsc} + F_{vigas} + F_{barr} = 8.73 \frac{\text{kN}}{\text{m}}$

d.3) VIENTO VERTICAL sobre el Tablero y MOMENTO DE VUELCO:

Anchura del Tablero: $B_{tab} = 15.15 \,\mathrm{m}$

Coef. Fuerza Vertical: $C_{fvert} := 0.9$

EMPUJE S/TABLERO: $E_{vert} := W_{tab} \cdot C_{fvert} \cdot B_{tab} = 14.01 \frac{\text{kN}}{\text{m}}$

MOMENTO VUELCO S/TABLERO: $M_{vsin} := 0.60 \cdot H_{eqsin} \cdot (W_{totsin}) + \frac{E}{2}$

$$M_{vsc} := 0.60 \cdot H_{eqsc} \cdot \left(W_{totsc}\right) + \frac{B_{tab} \cdot E_{vert}}{4} = 69.30 \text{ m} \cdot \frac{\text{kN}}{\text{m}}$$

d.4) VIENTO LONGITUDINAL sobre el Tablero:

Longitud Total de Vlong: $L_{vlon} := 34.50 \,\mathrm{m}$

Coef alfa: $\alpha := 0.52$ ENTORNO = 2

TABLA 4.2-d COEFICIENTE α SEGÚN EL TIPO DE ENTORNO

TIPO DE ENTORNO	
0	0,38
1	0,44
11	0,52
Ш	0,61
IV	0,67

Coeficiente Corrector Vlong: $L_z = 50.50 \,\mathrm{m}$ $\Phi_{lon} = 0.16$ RED = 0.77

 $L_{totsin} := RED \cdot \left(0.25 \cdot \left(F_{tabsin} + F_{vigas}\right) + 0.5 \cdot F_{barr}\right) = 1.4$

 $L_{totsc} := RED \cdot \left(0.25 \cdot \left(F_{tabsc} + F_{vigas}\right) + 0.5 \cdot F_{barr}\right) = 1.94$

d.5) VIENTO sobre las Pilas:

Consideramos una Altura Promedio de Pila igual a: $Z_{pil} := 4.50 \,\mathrm{m}$

Presión de la Velocidad de Viento: $q_{\rm W} = 0.49 \frac{\rm kN}{2}$

Coeficiente de Exposición (Zpil): $C_{epil} = 1.87$

Luego la PRESIÓN de VIENTO sobre la Pila resulta:

$$W_{pil} := q_w \cdot C_{epil} = 0.92 \frac{kN}{2}$$

VIENTO TRANSV_DIM. PILA: $L_{xpila} := 1.00 \text{ m}$

Coef. Fuerza de la Pila: $C_{fpilT} := 1.20$

Relación de Solidez Pilas: $\lambda_{pilas} := 1.00$

Separación Transversal Fustes/N° Fustes: $S_{pilas} := 5.50 \text{ m} - N_{fustes} := 3$

Espaciamiento Relativo Pilas SOTAVENTO: $s_{rpilas} := \frac{S_{pilas}}{L_{xpila}} = 5.5 \quad \eta_{pilas} := 0.86$

TABLA 4.2-c COEFICIENTE DE OCULTAMIENTO η

ESPACIAMIENTO	RELACIÓN DE SOLIDEZ A							
RELATIVO s,		0,2	0,3	0,4				
0,5	0,75	0,40	0,31	0,22	0,13	0,06		
1	1,00	0,82	0,64	0,46	0,28	0,10		
2	1,00	0,84	0,68	0,52	0,36	0,20		
3	1,00	0,86	0,72	0,59	0,45	0,31		
4	1,00	0,89	0,78	0,68	0,57	0,46		
5	1,00	1,00	0,92	0,85	0,77	0,69		
6	1,00	1,00	1,00	1,00	1,00	1,00		

$$F_{pilT} := W_{pil} \cdot C_{fpilT} \cdot L_{xpila} = 1.10 \frac{\text{kN}}{\text{m}}$$

$$F_{pilT_oculta} := F_{pilT} \cdot \eta_{pilas} = 0.95 \frac{\text{kN}}{\text{m}}$$

VIENTO LONGIT_DIM. PILA: $L_{ypila} := 1.00 \text{ m}$

Coef. Fuerza de la Pila: $C_{fpilL} := 1.20$

$$F_{pilL} := W_{pil} \cdot C_{fpilL} \cdot L_{ypila} = 1.10 \frac{\text{kN}}{\text{m}}$$

NOTA: COEFICIENTES DE FUERZA CF PARA LAS SECCIONES DE PILA MÁS HABITUALES

FIGURA 4.2-b COEFICIENTE DE FUERZA C, PARA LAS SECCIONES MÁS HABITUALES

B/h	≤0,2	0,4	0,6	0,7	1,0	2,0	5,0	≥ 10,0
Cf	2,0	2,2	2,35	2,4	2,1	1,65	1,0	0,9
w ⇒	Ø	supe	erflicie ilsa v_b (7) $\sqrt{c_a}$	y tal qu , (z) > 6 :	e: r	ugosa ^(*) , Ø v _b (T)	o lisa ta $\sqrt{c_e(z)}$	l que:
) c _f =	1,6	′ ⇒() c ₇	= 1,45	w	\bigcirc	c _r = 1,3
N	′ ⇒ [> c,	,= 2,2	A	w		3[c _p = 2,0
	-	c _f 2,0	c _f 2,0 2,2 W	c _f 2,0 2,2 2,35 W Ø sección circ superficie lisa Ø v _b (n)√c c _f = 0	c_f 2,0 2,2 2,35 2,4 Sección circular con superficie lisa y tal que v_b $(T) \sqrt{c_a(z)} > 6$ $c_f = 1.6$ v_b v_b v_c v	c_r 2,0 2,2 2,35 2,4 2,1 Secution circular con sect superficie lisa y tal que: $\emptyset v_b(T) \sqrt{c_a(z)} > 6 \text{ m²/s}$ $c_r = 1.6$ $v_b = 1.45$	c_f 2,0 2,2 2,35 2,4 2,1 1,65 w sección circular con superficie lisa y tal que: $v_{to} = 0.7$ $v_{to} = 0.7$ $v_{to} = 1.6$ w $v_{to} = 0.7$ $v_{to} = 1.45$ $v_{to} = 0.7$	c_r 2,0 2,2 2,35 2,4 2,1 1,65 1,0 sección dircular con superficie lisa y tal que: $\emptyset v_b(T) \sqrt{c_b(z)} > 6 \text{ m²/s}$ $c_r = 1.6$ $v_b = 1.45$ $v_b = 1.45$

PS PO-400 - ANEJO DE CÁLCULO

ANEJO Nº 2: CÁLCULO DEL TABLERO

FECHA: HOJA: DE

(*) TABLERO PASO INFERIOR PO-400: RESUMEN DE CÁLCULO (*)

1) INTRODUCCIÓN

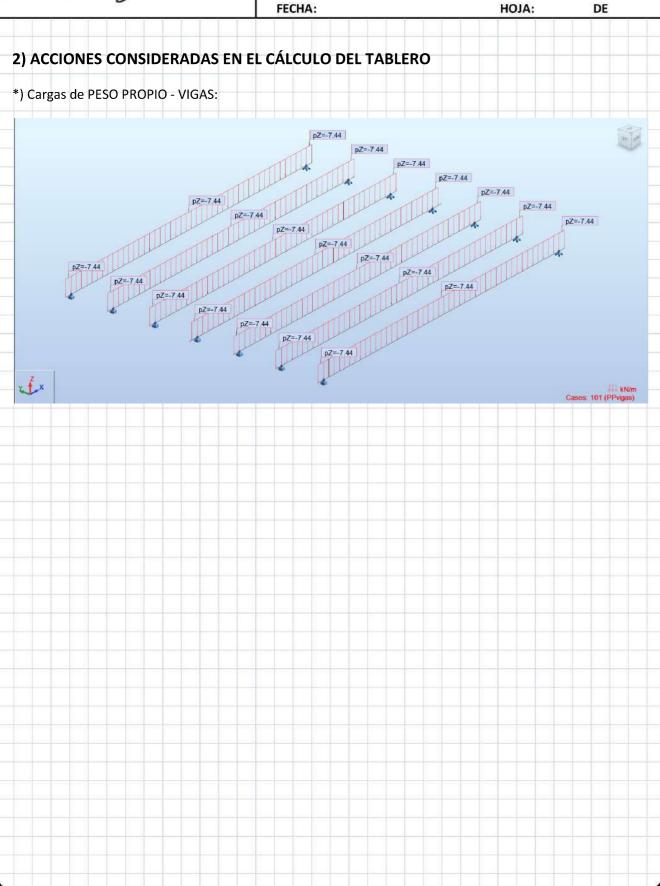
Para reproducir el comportamiento resistente de un tablero constituido por una serie de vigas longitudinales en doble "T" y una losa superior emplearemos el método del emparrillado.

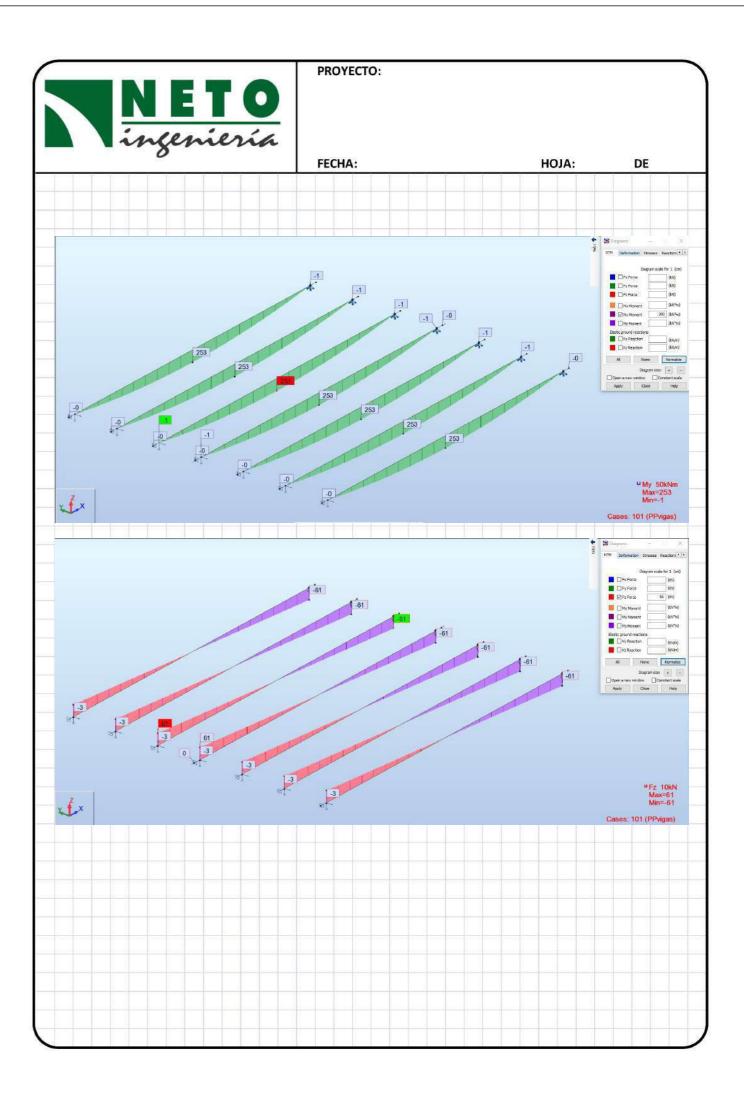
LLevamos a cabo un modelo plano del tablero empleando elementos tipo viga a flexión de modo que cada una de las vigas longitudinales del tablero se reproduce por una viga longitudinal del emparrillado. El resto de las vigas transversales reproduce segmentos de la losa superior.

Sobre este modelo de cálculo se introducen todas las cargas de tipo Gravitatorio (PESO PROPIO, PERMANENTES y SOBRECARGAS) consideradas en el apartado de "Cálculo de Acciones".

- El Peso Propio de las Vigas Pretensadas, Prelosas de Encofrado Perdido y Losa de Tablero actúa sobre las Vigas Longitudinales.
- Las Cargas de Pretensado se introducen también sobre las Vigas Prefabricadas teniendo en cuenta que los efectos de la fluencia entre los dos hormigones (vigas y losa) provocan una redistribución de esfuerzos tanto de las acciones de Peso Propio como del Pretensado sobre la Sección Compuesta.
- Las Cargas Muertas y Sobrecargas Vivas actúan sobre la Sección Compuesta de Viga + Losa.

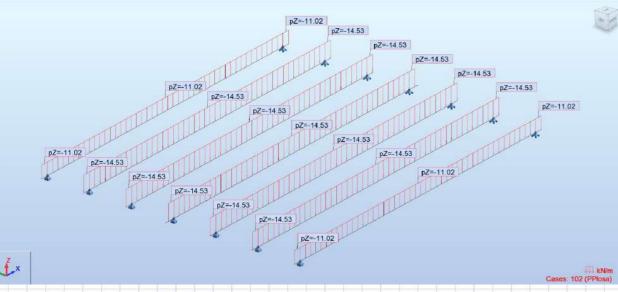
A partir de este Modelo de Cálculo se obtienen: Reacciones sobre los Aparatos de Apoyo de la Estructura así como Esfuerzos sobre las Vigas Longitudinales que se emplean para comprobar el Pretensado de las mismas (ELS) y llevar a cabo el dimensionamiento de la armadura a flexión principal de las Vigas (ELU).

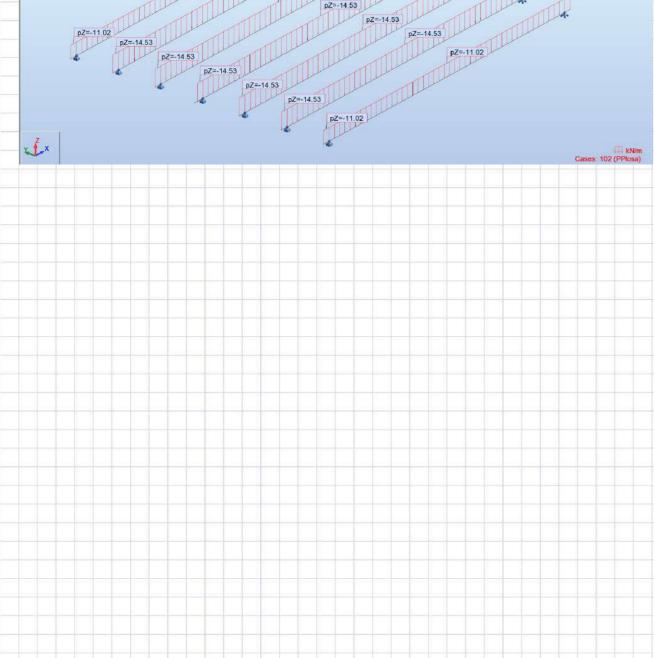

Para el dimensionamiento de la Losa de Tablero se lleva a cabo un modelo híbrido de Barras y Láminas que permite estudiar con más detalle el comportamiento resistente de la misma.

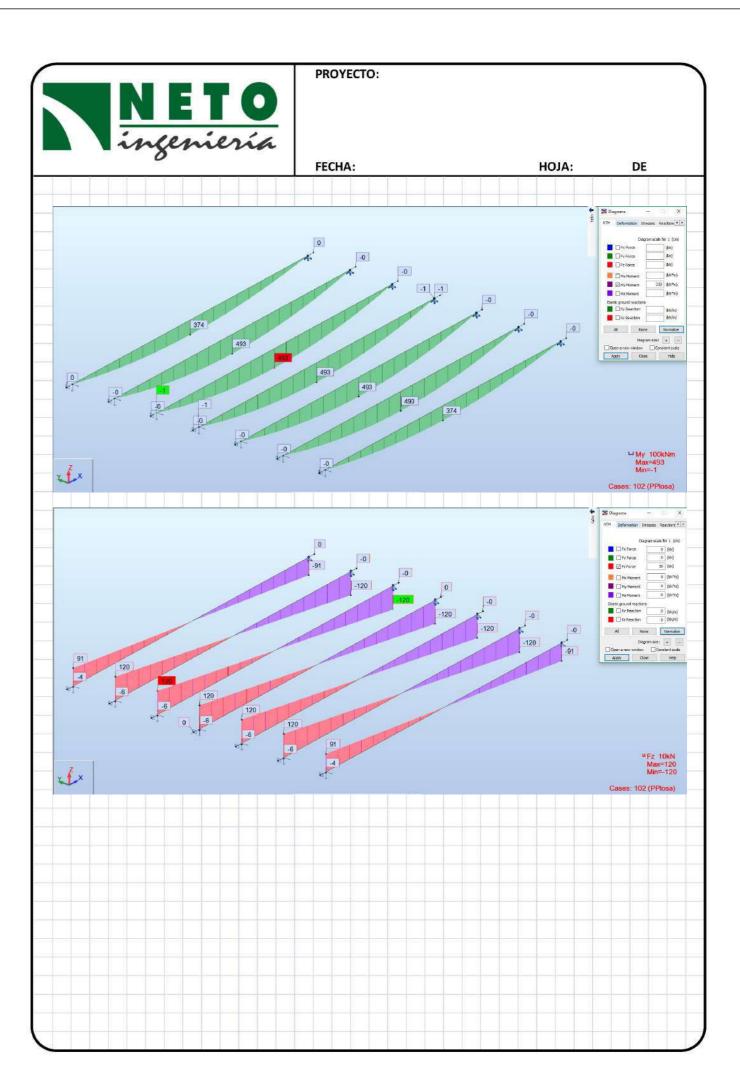


		PROYECTO:			
N E ingen	TO				
10000	10061				
ingen	iena	FECHA:		ноја:	DE
		FECHA:		HOJA:	DE
ntinuación mostramo	os una serie de im	nágenes del Mode	lo de Cálculo emplea	ndo:	
	16.50		*		
			The state of the s		
_				*	
				A	
	40				
	14 Jan				
	1				
		43			
_x		15.15			
				Ca	ases: 101 (PPviga
					The late
					OSATRANSV_I
					.OSATRANSV_E .OSATRANSV_II /IGAPRET_EXT /IGAPRET_INT
					.OSATRANSV_E .OSATRANSV_IN /IGAPRET_EXT /IGAPRET_INT
					OSATRANSV_IN
					OSATRANSV_II
					OSATRANSV_II
					OSATRANSV_II
					OSATRANSV_I

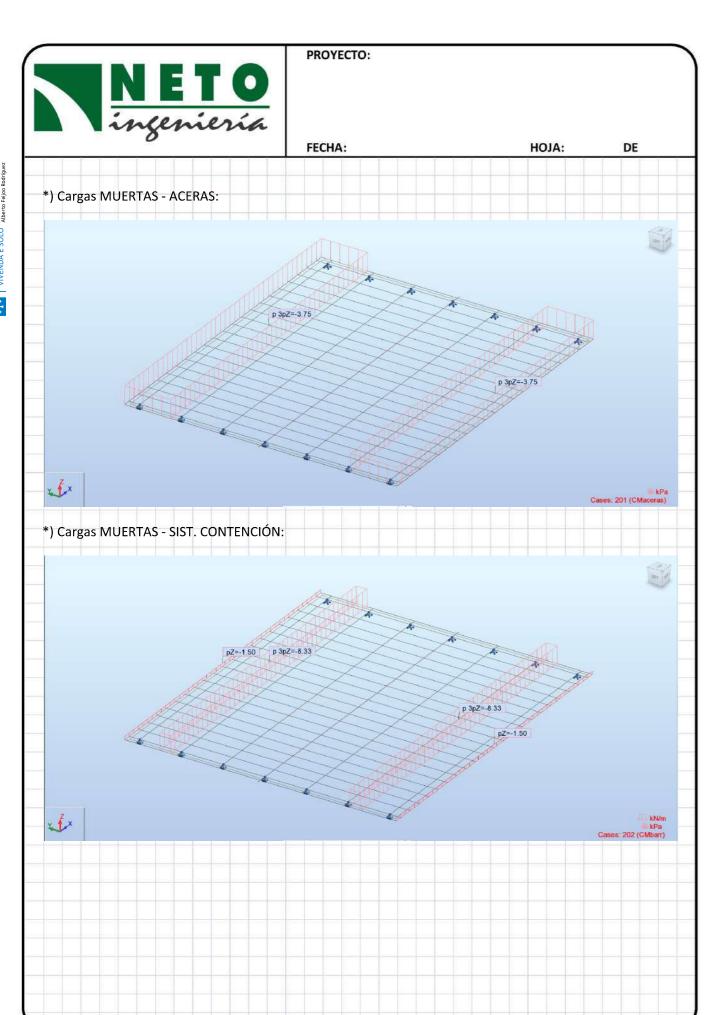
	-	U
in	geni	ería

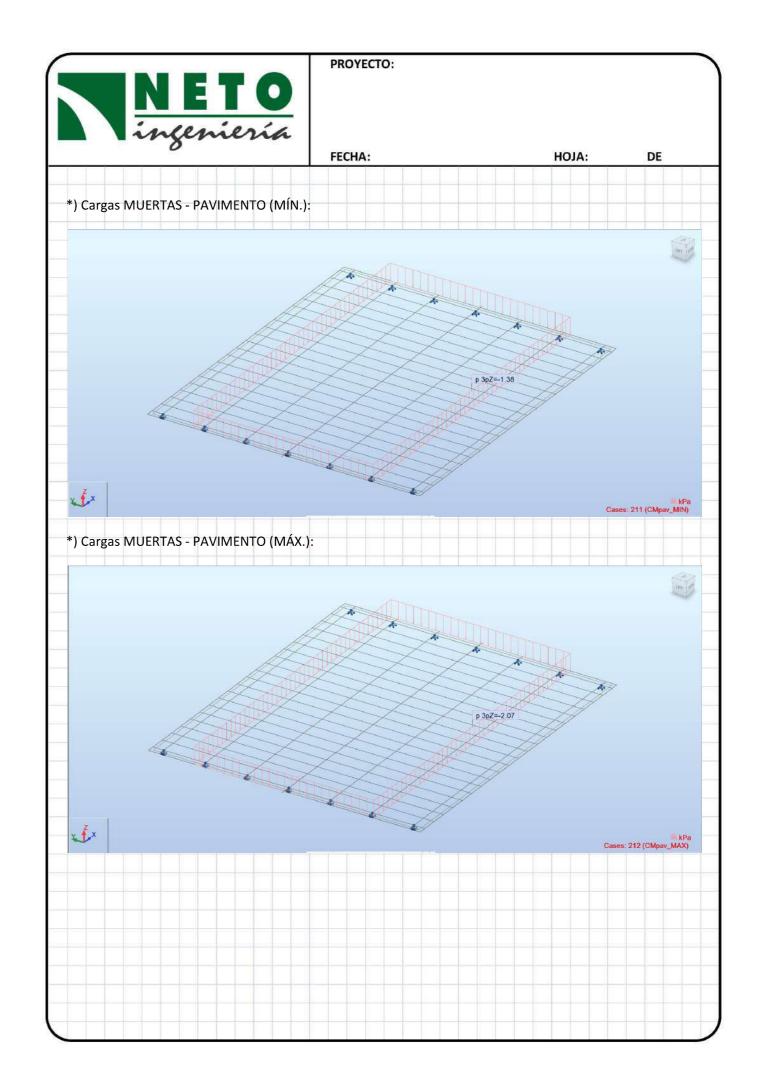


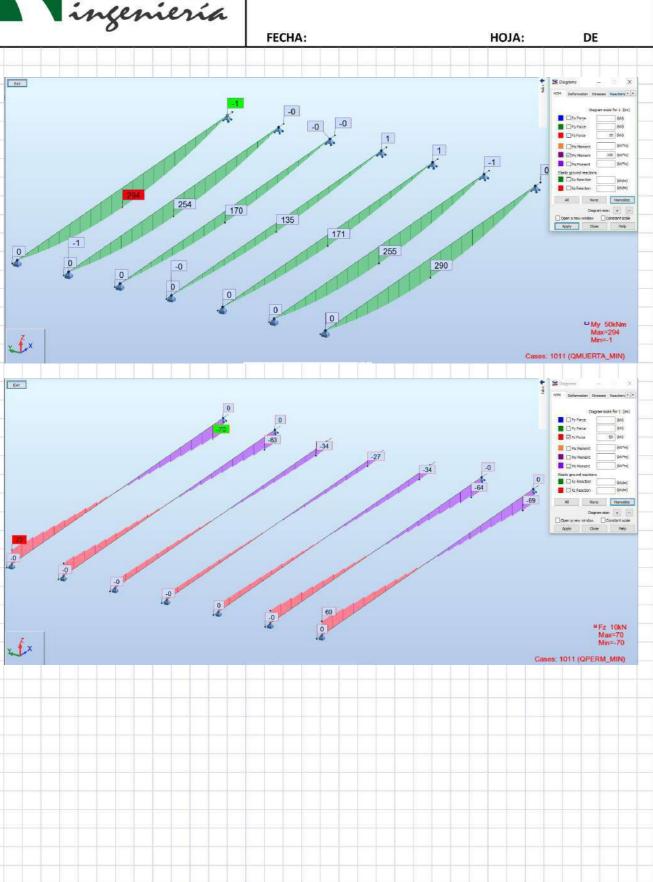


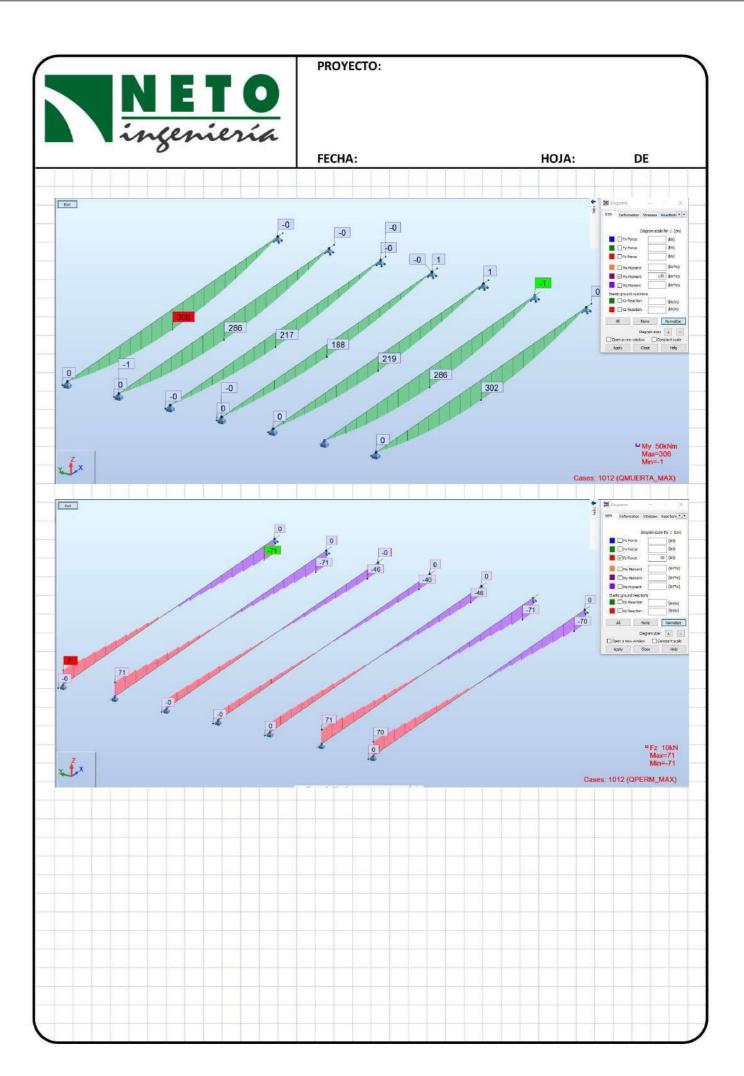

FECHA: HOJA:

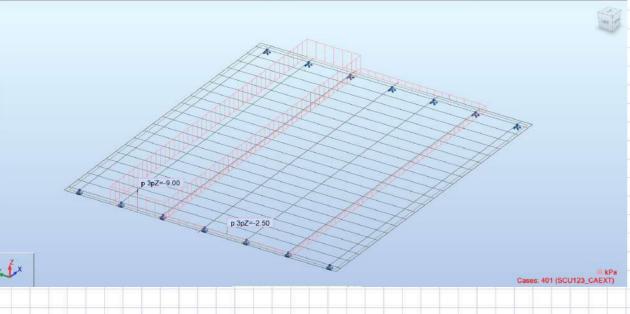
DE

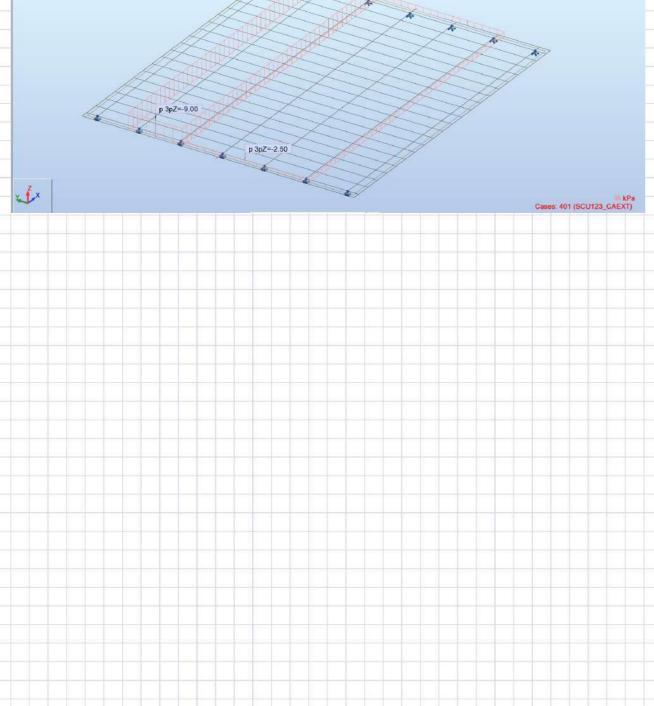

*) Cargas de PESO PROPIO - LOSA TABLERO:

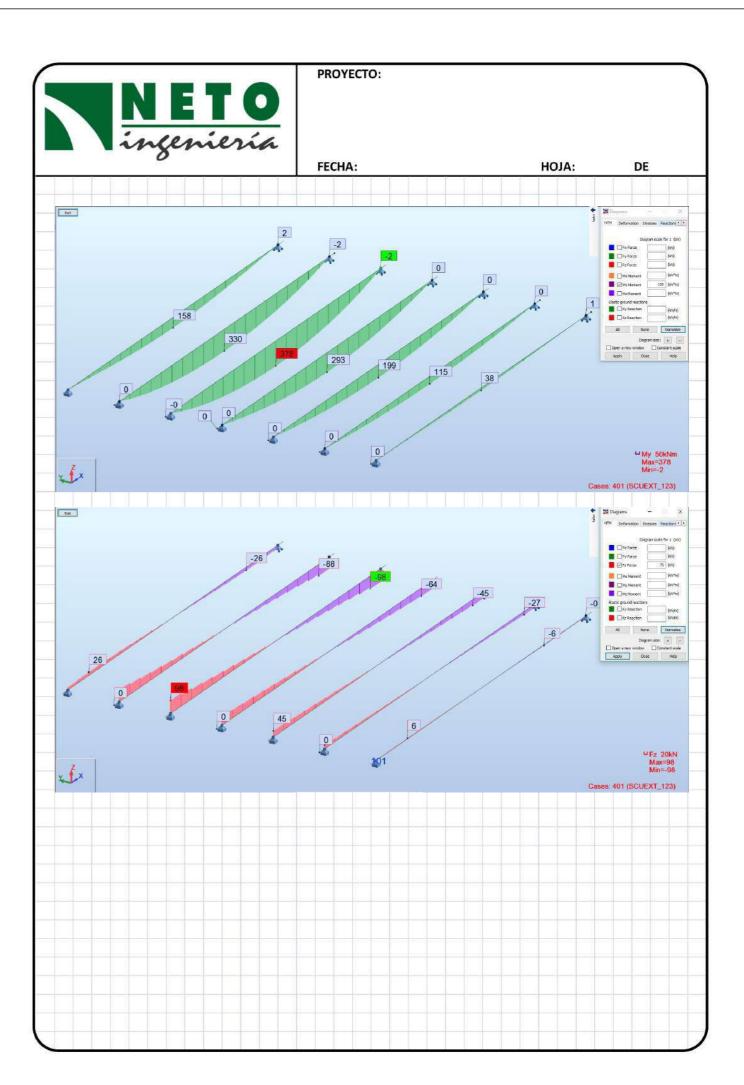






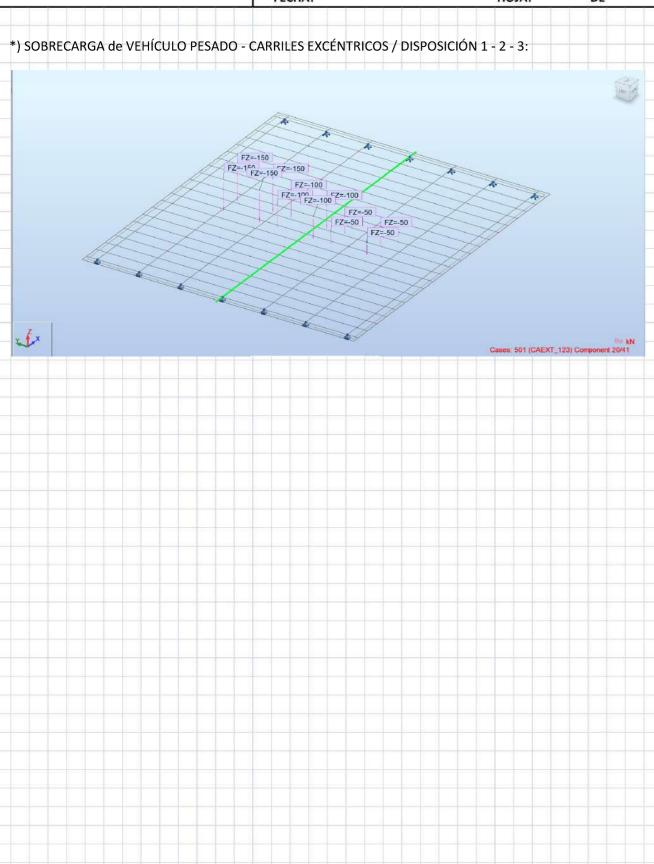


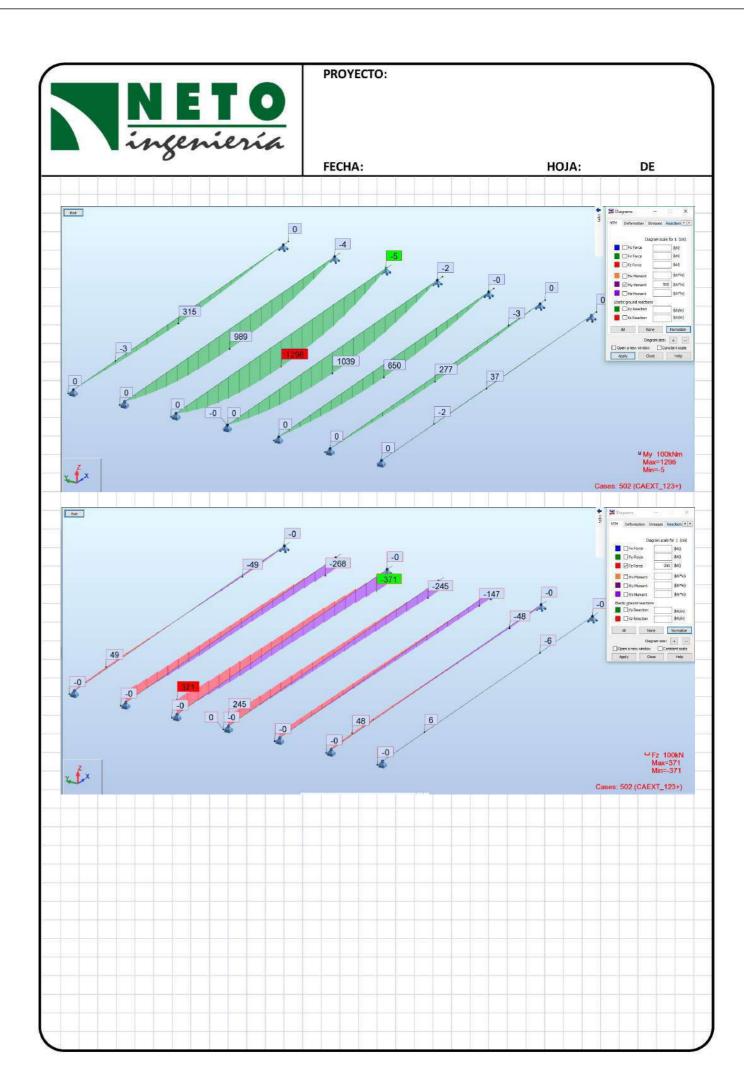

	-	U
in	eni	ería


FECHA: HOJA:

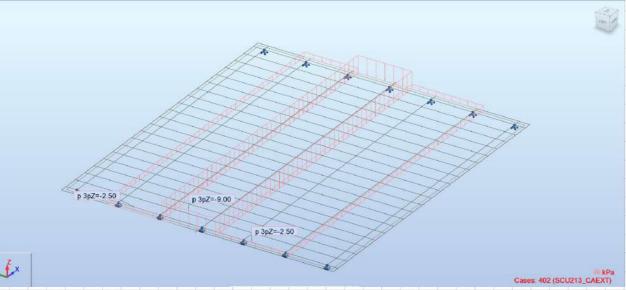
DE

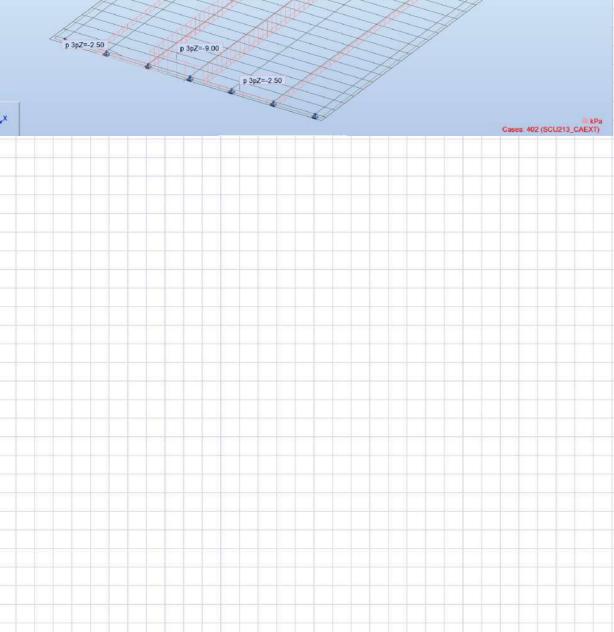
*) SOBRECARGA de USO - CARRILES EXCÉNTRICOS / DISPOSICIÓN 1 - 2 - 3:

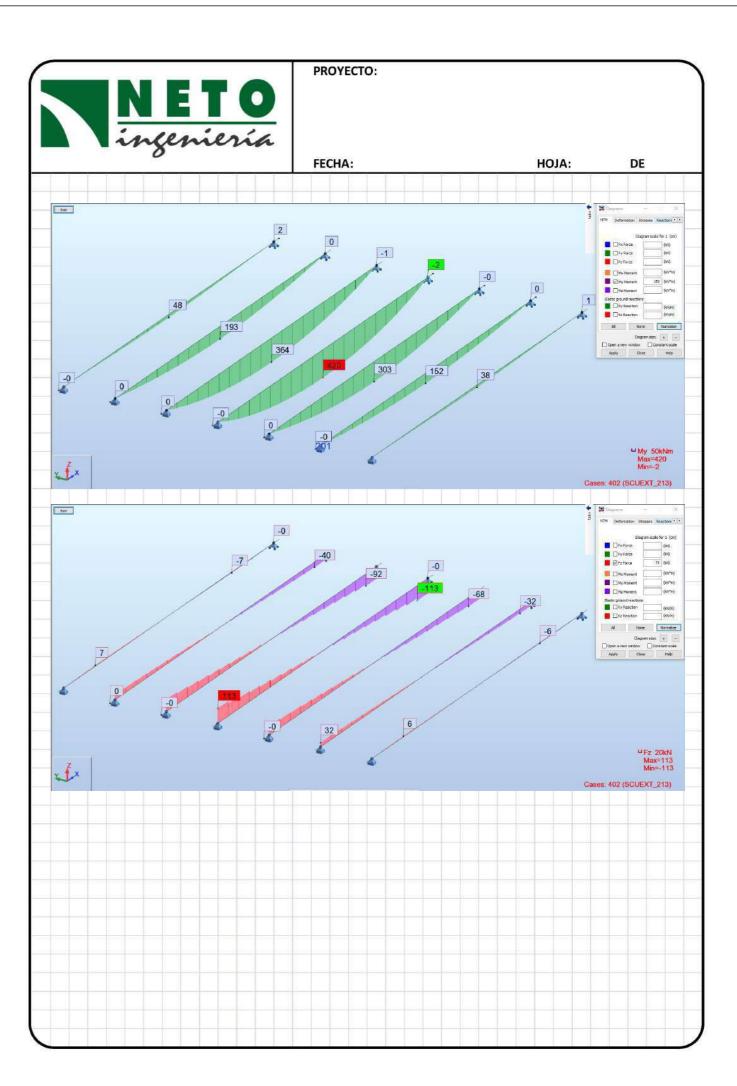




	-	U
in	eni	ería

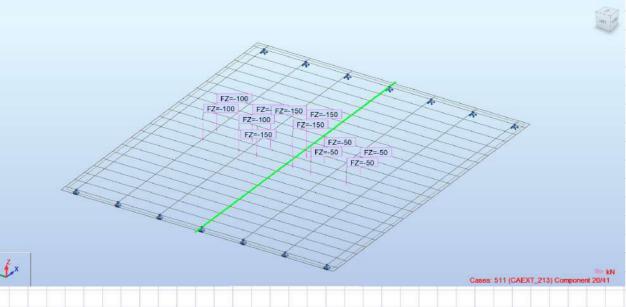


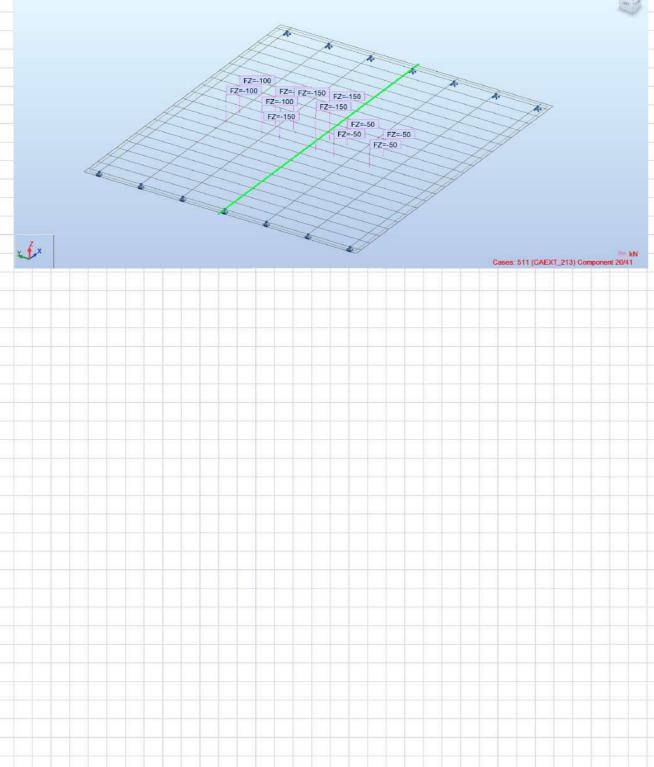

N		10
	40 4	11 (1
m	zem	ería

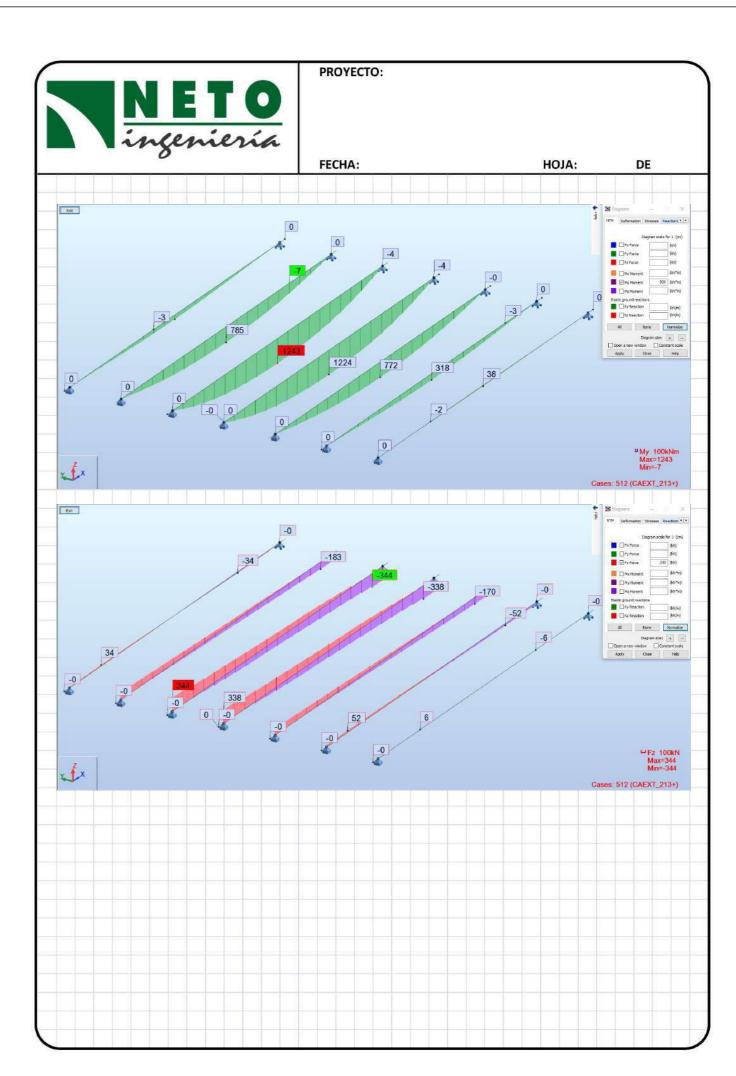

FECHA: HOJA:

DE

*) SOBRECARGA de USO - CARRILES EXCÉNTRICOS / DISPOSICIÓN 2 - 1 - 3:

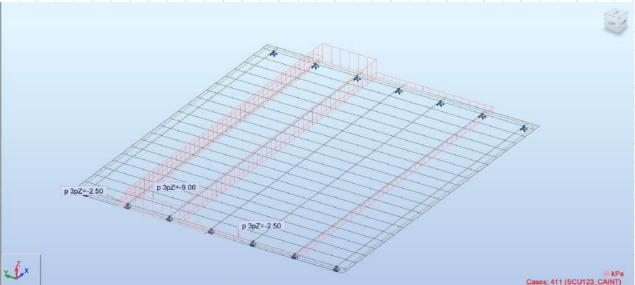


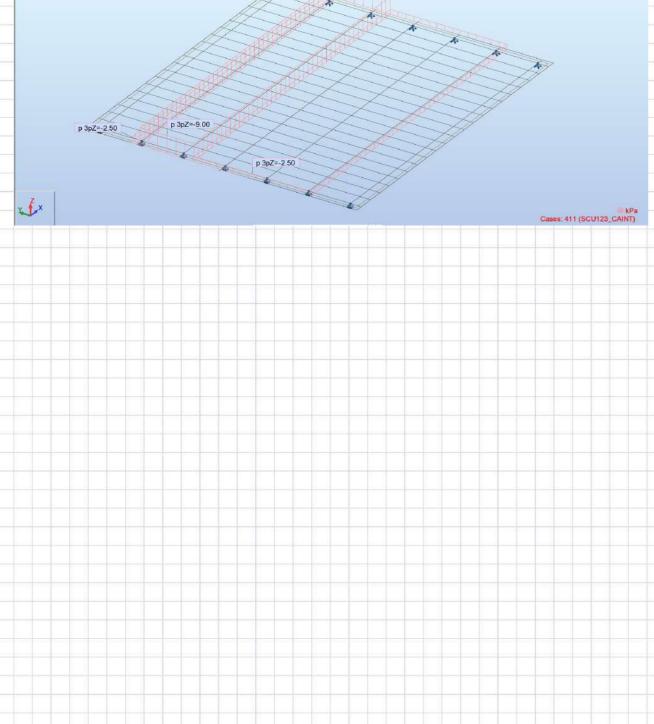


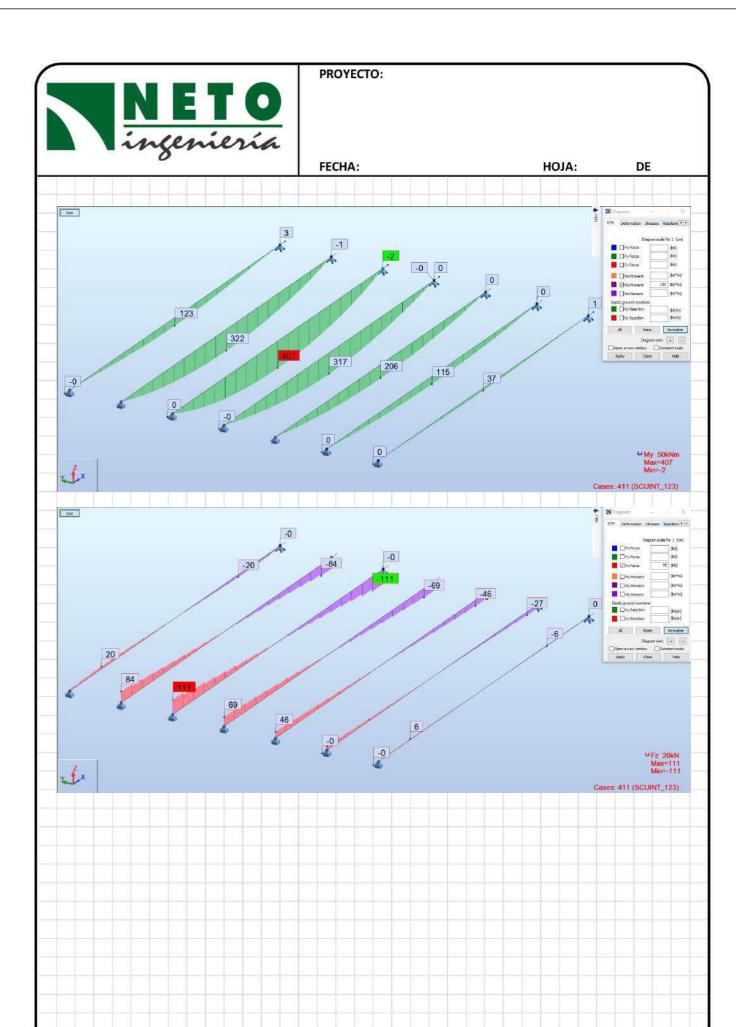

PROY	ECTC
------	------

FECHA: HOJA: DE

*) SOBRECARGA de VEHÍCULO PESADO - CARRILES EXCÉNTRICOS / DISPOSICIÓN 2 - 1 - 3:

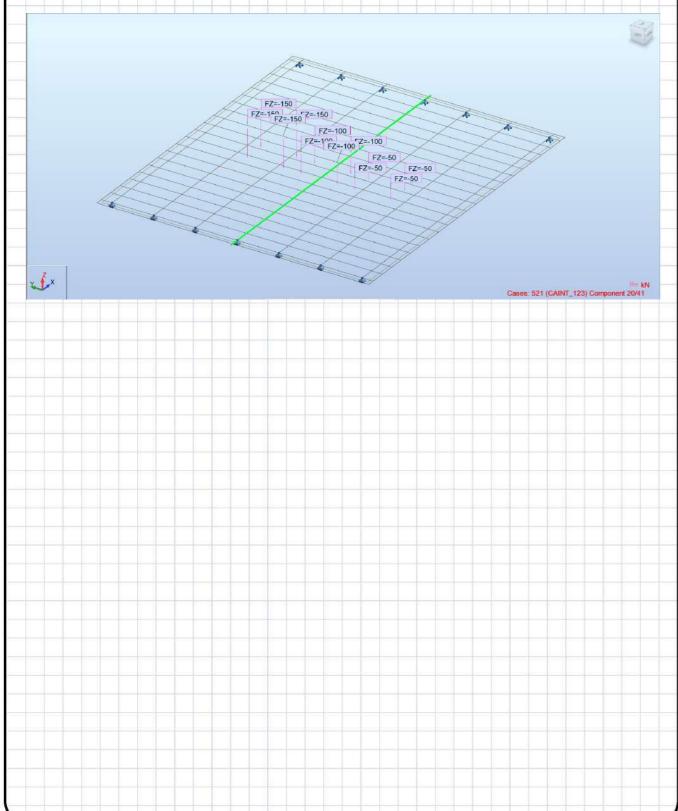


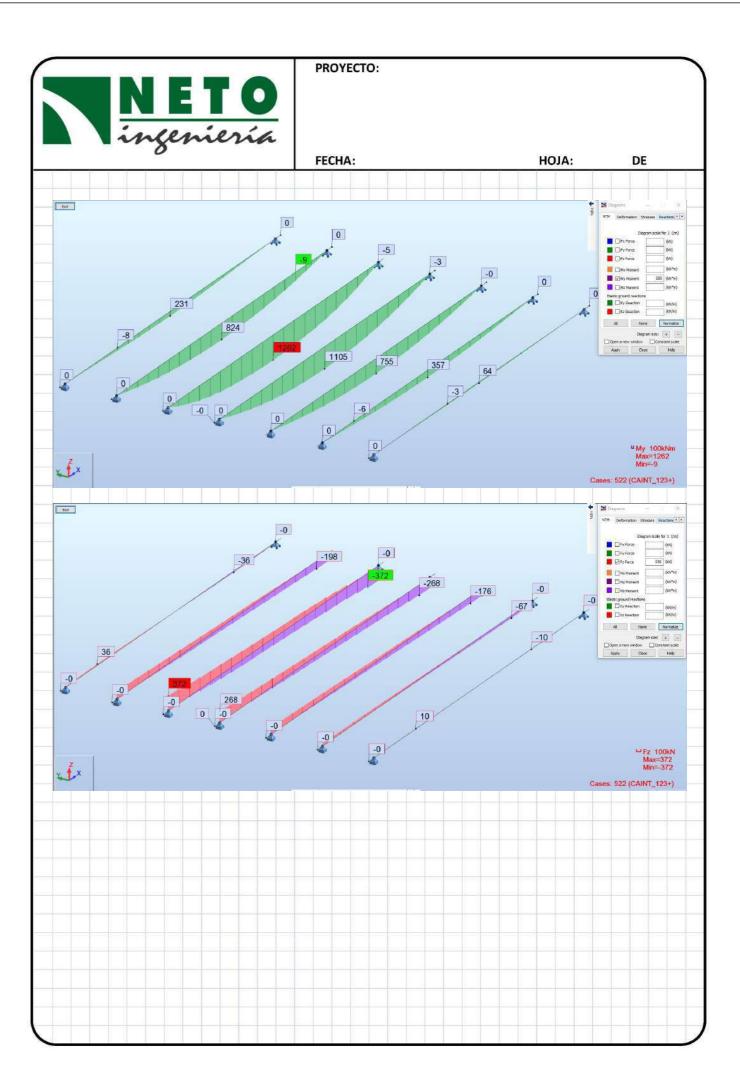

	-	
in	zeni	ería


FECHA: HOJA:

DE

*) SOBRECARGA de USO - CARRILES CENTRADOS (DISPOSICIÓN 1 - 2 - 3):

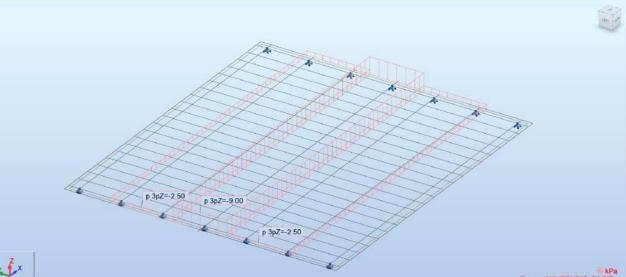


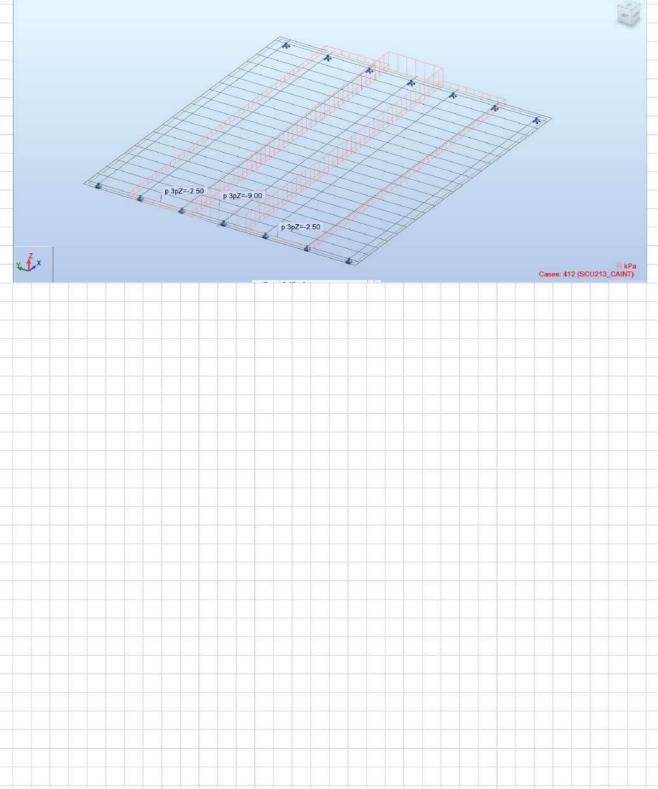

N	4	10
		2066
m	zem	ería

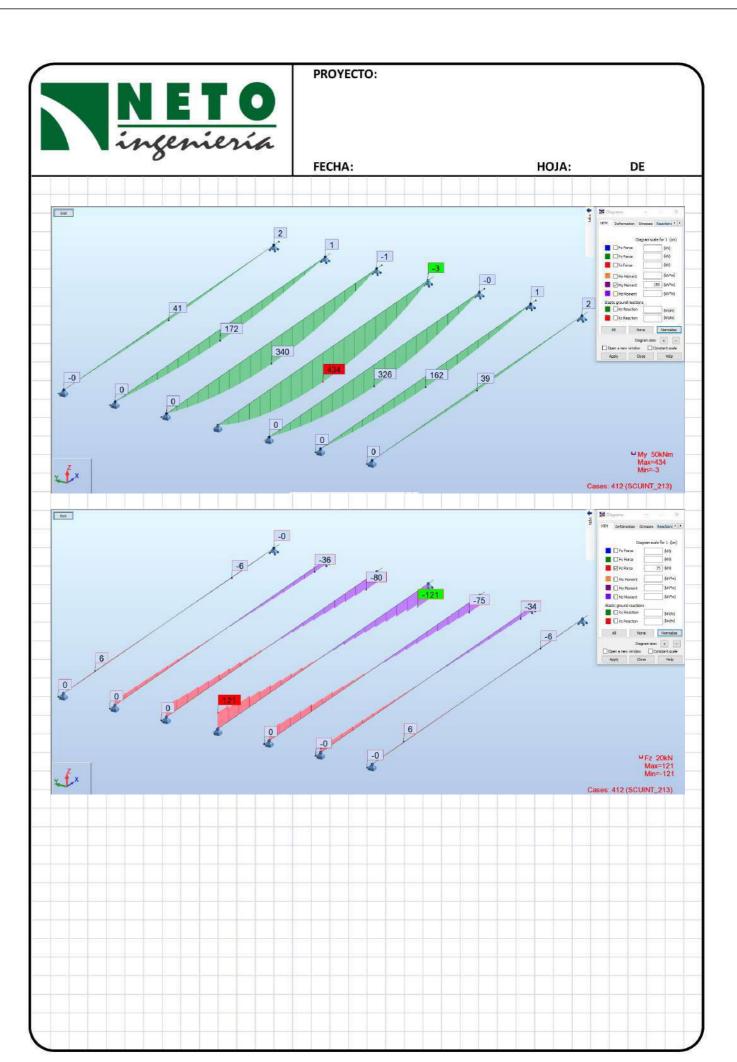
FECHA: HOJA:

DE

*) SOBRECARGA de VEHÍCULO PESADO - CARRILES CENTRADOS / DISPOSICIÓN 1 - 2 - 3:

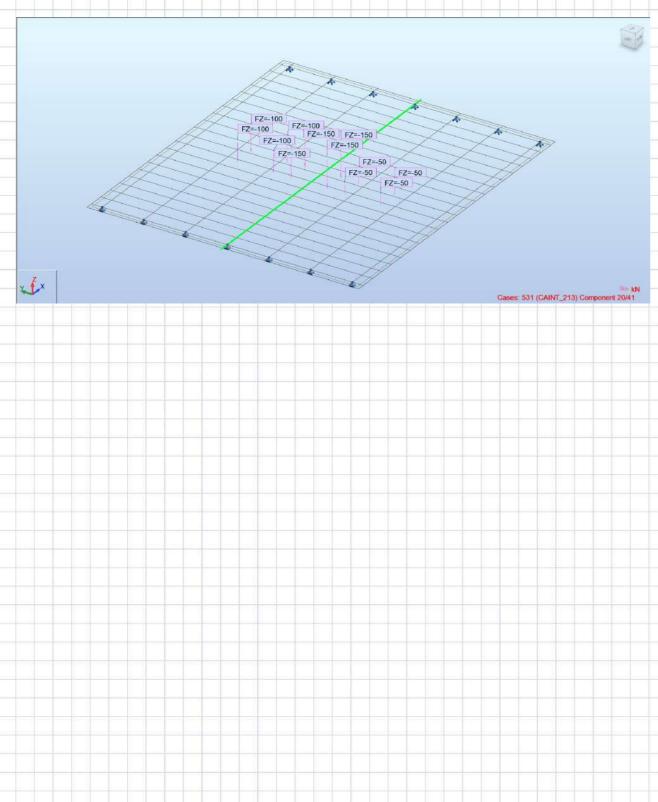



NE	IO
incen	iería


FECHA: HOJA:

DE

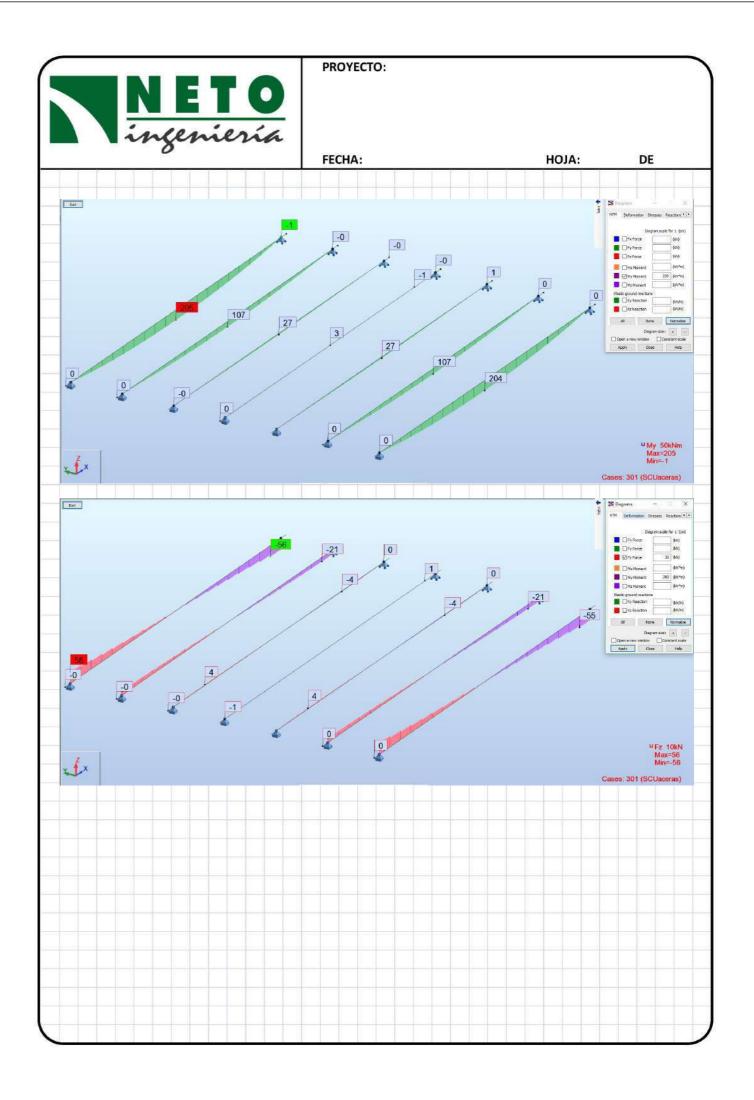
*) SOBRECARGA de USO - CARRILES CENTRADOS / DISPOSICIÓN 2 - 1 - 3:



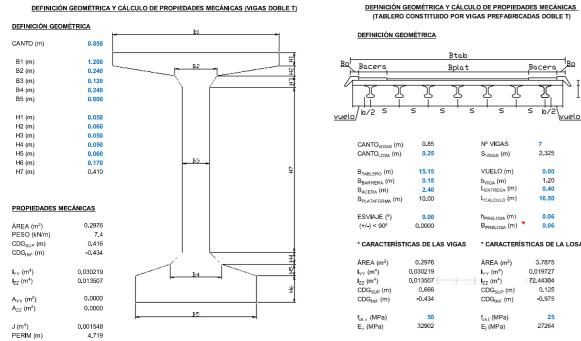


FECHA: HOJA:

DE


*) SOBRECARGA de VEHÍCULO PESADO - CARRILES CENTRADOS / DISPOSICIÓN 2 - 1 - 3:

FECHA: HOJA: DE *) SOBRECARGA de USO PEATONAL - ACERAS: Cases: 301 (SCUaceras)



FECHA: HOJA: DE

3) COMPROBACIÓN DE VIGAS PRETENSADAS

CANTO _{VIGAS} (m)	0.85	Nº VIGAS	7
CANTO _{LOSA} (m)	0.25	S _{VIGAS} (m)	2.325
B _{TABLERO} (m)	15.15	VUELO (m)	0.00
B _{BARRERA} (m)	0.18	b _{VIGA} (m)	1.20
B _{ACERA} (m)	2.40	L _{ENTREGA} (m)	0.40
B _{PLATAFORMA} (m)	10.00	L _{CÁLCULO} (m)	16.50
ESVIAJE (°)	0.00	h _{PRELOSA} (m)	0.06
(+/-) < 90°	0.0000	B _{PRELOSA} (m)	0.06

* CARACTERÍSTICAS DE LA LOSA ÁREA (m²) I_{YY} (m⁴) I_{ZZ} (m⁴) 0.2976 0.030219 0.013507 0.019727 72.44304

CDG _{SUP} (m) CDG _{INF} (m)	-0.434	CDG _{SUP} (m) CDG _{INF} (m)	0.125
f _{ck,v} (MPa)	50	f _{ck,I} (MPa)	25
E _v (MPa)	32902	E _I (MPa)	27264

* CDG TABLER	O CONJUNTO:
CDG _{SUP} (m)	0.341
CDG _{INF} (m)	-0.759
DIST (m)	0.216

PROPIEDADES MECÁNICAS SECCIÓN HOMOGENEIZADA EFICAZ (VIGA EXTERIOR)

* CÁLCULO DE ANCHOS EFICACES

B _{LOSAEXT} (m)	1.763
INT (m)	1.103
EXT (m)	0.540
B _{LOSAEF} (m)	1.763
INT_ef (m)	1.103

h_{LOSA} (m) 0.25

* CARACTERÍS	* CARACTERÍSTICAS DE LA VIGA		STICAS DE LA LOSA
ÁREA (m²)	0.2976	ÁREA (m²)	0.3997

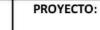
YY (***)	0.0002.0	*YY (***)	0.001010	
I_{ZZ} (m ⁴)	0.013507	I _{ZZ} (m⁴)	0.092987	
A_{YY} (m z)	0.0000			
A_{ZZ} (m ²)	0.0000			
J (m ⁴)	0.001548	J (m ⁴)	0.002015	
CDG _{SUP} (m)	0.666	CDG _{SUP} (m)	0.115	
CDG _{INF} (m)	0.434	CDG _{INF} (m)	-0.985	
f _{ck,v} (MPa)	50	f _{ck,I} (MPa)	25	
E _v (MPa)	32902	E _I (MPa)	27264	

* CARACTERÍSTIC	AS DE LA	SECCIÓN CONJUNTA VIGA+	LOSA	
B _{LOSAHOMOG} (m)	1.460	COEF _{LOSA} (n)	0.829	
ÁREA _{HOMOG} (m ²)	0.6288			
A_{YY} (m ²)	0.0000			
A_{ZZ} (m ²)	0.0000	I _{YY HOMOG} (m ⁴)	0.079296	
CDG _{HOMOGSUP} (m	0.376	I _{ZZ HOMOG} (m ⁴)	0.090559	
CDGuovocius (m	0.724	Jugarga (m ⁴)	0.003218	

PROPIEDADES MECÁNICAS SECCIÓN HOMOGENEIZADA EFICAZ (VIGA INTERIOR)

* CÁLCULO DE ANCHOS EFICACES

B _{LOSAINT} (m)	2.325
INT (m)	1.103
EXT (m)	1.103
B _{LOSAEF} (m)	2.325
INT_ef (m)	1.103
FXT ef (m)	1 103


h_{LOSA} (m) 0.25

* CARACTERÍSTICAS DE LA VIGA * CARACTERÍSTICAS DE LA LOSA

ÁREA (m²)	0.2976	ÁREA (m²)	0.5066	
I_{YY} (m ⁴)	0.030219	I_{YY} (m ⁴)	0.002331	
I _{ZZ} (m ⁴)	0.013507	I _{ZZ} (m ⁴)	0.205293	
A_{YY} (m ²)	0.0000			
A_{ZZ} (m ²)	0.0000			
J (m ⁴)	0.001548	J (m ⁴)	0.002658	
CDG _{SUP} (m)	0.666	CDG _{SLIP} (m)	0.111	
CDG _{SUP} (III)	-0.434	CDG _{SUP} (III)	0.989	
CDG _{INF} (m)	-0.434	CDG _{INF} (III)	-0.505	
f _{ck,v} (MPa)	50	f _{ck,I} (MPa)	25	
E _v (MPa)	32902	E _I (MPa)	27264	
* CARACTERÍS	STICAS DE LA SEC	CIÓN CONJUNTA VIGA	+I OSA	

B _{LOSAHOMOG} (m)	1.927	COEFLOSA (n)	0.829	
ÁREA _{HOMOG} (m ²)	0.7173	LOGIC C		
A_{YY} (m ²)	0.0000			
A _{ZZ} (m ²)	0.0000	I _{YY HOMOG} (m ⁴)	0.085734	
CDG _{HOMOG SUP} (r	0.341	I _{ZZ HOMOG} (m ⁴)	0.183620	
CDG _{HOMOG INF} (n	-0.759	J _{HOMOG} (m ⁴)	0.003750	

F4b: REDISTRIBUCIÓN t=oo

FECHA: HOJA: DE

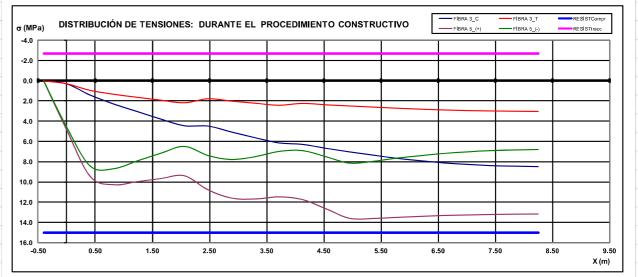
				FEC	CHA:				н	DJA:	3.0
DATOS DE LOS MATERIA	LES: EFEC	TOS REOLÓGIC	OS - RETRAC	CIÓN Y F	LUENCIA						
* VIGA PREFABRICADA											
Área Viga:	Av	0.2976 m ²									
Perímetro Viga:	Pv	3.519 m									
3	ev	169 mm	1								
	fck	50 MF									
	fcm	58 MF	^o a								
	Ec	32902 MF	Pa								
	HR	70 %	βнк	-1.02							
* CÁLCULO RETRACCIÓN											
FACE CONCIDEDADA	to	•	βds(t-ts)	V.	Ecd,oo	Cod (t)	βas(t)	C00.00	C 00 (t)	€c_FASE	
FASE CONSIDERADA	ts	t		Ke				Eca,00			
F1: HORMIGONADO LOSA		30	0.21	0.91	-0.000402		0.67	-0.000100		-0.000143	0.143
F2: CARGAS MUERTAS	7	60	0.38	0.91	-0.000402		0.79	-0.000100	0.000079		0.217
F3: EN SERVICIO t=0	7 7	90	0.49	0.91 0.91	-0.000402		0.85	-0.000100	-0.000085		-0.263 -0.467
F4: EN SERVICIO t=00	,	36500	1.00	0.91	-0.000402	-0,000367	1.00	-0.000100	-0.000100	-0.000203	0.407
* CÁLCULO FLUENCIA											
FASE CONSIDERADA	to	t	ΨHR	β(fcm)	β(to)	ψο	βн	βc(t-to)	ψ (t,to)	χ (t,to)	REDISTR
F1: HORMIGONADO LOSA		30	1.25	2.21	0.74	2.05	515	0.41	0.83	0.66	
F2: CARGAS MUERTAS	3	60	1.25	2.21	0.74	2.05	515	0.50	1.02	0.65	
F3: EN SERVICIO t=0	3	90	1.25	2.21	0.74	2.05	515	0.56	1,15	0.64	
F3b: REDISTRIBUCIÓN t=0	30	90	1.25	2.21	0.48	1,33	515	0,51	0,67	0.86	19.8
F4: EN SERVICIO t=00	3	F 36500	1.25	2.21	0.74	2.05	515	1.00	2,04	0.63	15.0
F4b: REDISTRIBUCIÓN t=00	30	36500	1.25	2.21	0.48	1.33	515	1.00	1.32	0.85	56.9
* LOSA DE TABLERO (ANCI	HO TRIBUT	ARIO)									
Área Losa,trib:	Al	0.4406 m ²									
Perímetro Losa,trib:	PI	2.575 m									
	el	342 mm	1								
	fck	25 MF	Pa								
	fcm	33 MF	Pa								
	Ec	27264 MF	oa e								
	HR	70 %	βнR	-1.02							
* CÁLCULO RETRACCIÓN											
FASE CONSIDERADA	ts	• t	βds(t-ts)	Ke	ecd,oo	€cd (t)	βas(t)	£ca,00	gca (t)	&c_FASE	TOTAL ‰
F1: HORMIGONADO LOSA		0			_						. 5 IAL_/30
F2: CARGAS MUERTAS	7	30	0.08	0.74	-0.000384	-0.000024	0.67	-0.000038	-0.000025	-0.000049	0.049
F3: EN SERVICIO t=0	7	60	0.17	0.74	-0.000384		0.79	-0.000038	0.000023		0.079
F4: EN SERVICIO t=00	7	36470	0.99	0.74	-0.000384		1.00	-0.000038	-0.000038		0.320
* CÁLCULO FLUENCIA											
FASE CONSIDERADA	to	t	110	β(fcm)	β(to)	We	ß	βc(t-to)	ψ (t,to)		
			ΨHR			Ψο	βн	•			
F2: CARGAS MUERTAS	30	30	1.43	2.92	0.48	2.01	786	0.00	0.00		
F3: EN SERVICIO t=0	30	60	1.43	2.92	0.48	2.01	786	0.37	0.75		
F3b: REDISTRIBUCIÓN t=0	30	60 5 36470	1.43	2.92	0.48	2.01	786	0.37	0.75		
F4: EN SERVICIO t=00	30	36470	1.43	2.92	0.48	2.01	786	0.99	2.00		
AN DEDICTORDUCION +- 00	30	26470	1 /2	2 02	0.49	2 04	796		2 00		

1.43 2.92

FECHA: HOJA: DE

3.1) <u>Viga 1 y 7 - EXTERIORES</u> :			
-/			
DATOS DE LOS MATERIALES: VIGA PREFABRICADA			
HORMIGÓN: * ARMAD	DURA ACTIVA:	* ARMADURA PASIVA:	
	les de Pretensado: (nom 15.2 mm	BARRAS CORRUGADAS: Es 200000 MPa	
γ ^C 1.50 ELU (Y-1860 S 1.30 ACC		(B-500 S/SD)	
Limite El	lástico Característico: fypk 1637 MPa	Límite Elástico Característico: fyk 500 MPa 1.15 ELU 18 ACC	
esist. Media Compresión (28 d): fcm 58.00 MPa esist. Media Tracción (28 d): fct,m 4.07 MPa	1.15 ELU 1.00 ACC	1.00 ACC	
esist. Media Flexotracción (28 d): fctm,fl 4.07 MPa Longitud hviga 0.85 m Tensión A	Transferencia: Ibpt		
	fbpd(3) 1.5 MPa		
EDAD HORMIGÓN EN TESADO: 3 d	DEF, ARMADURAS ACTIVAS	DEF. ARMADURAS PASIVAS	
ódulo Deformación Secante (TESADO): Ecm 29086 MPa	Ncor Z _{MGASUP} (m) Lent (m) Ltransf (m	As (cm²) Z (m)	
ódulo Deformación Tangente (TESADO): Ec 34176 MPa esist. Media Compresión (TESADO): fcm 38.45 MPa	FILA 1 4 0,800 0,00 0.91	FILA 1 0,00 0,800	
esist, Media Tracción (TESADO): fct,m 2.70 MPa esist, Media Flexotracción (TESADO): fctm,fl 2.70 MPa	FILA 2 2 0.800 2.50 3.41 FILA 3 4 0.750 0.00 0.91	FLA 2 FLA 3	
hviga 0.85 m	FILA 4 2 0.750 4.50 5.41 FILA 5 2 0.050 0.00 0.91	FLA 4 FLA 5	
tarámetro Cemento: s 0,20	FILA 6 0.00	FLA 6	
oeficientes: α 1.00 $\beta cc(t)$ 0.66	FILA 7 0.00 FILA 8 0.00	FILA 7 FILA 8	
	FILA 9 0.00 FILA 10 0.00	FILA 9 FILA 10	
	FILA 11 0.00 FILA 12 0.00	FILA 11 FILA 12	
	FILA 13 0.00	FILA 13	
	FILA 14 0.00 FILA 15 0.00	FILA 14 FILA 15	
	SUMA 14	ļ	
	Ap,tot (cm²) 19.60 np 5.77	As,tot (cm²) 0.00 ns 6.08	
	CDGsup (m) 0.671	CDGsup (m) 0.800	
	CDGinf (m) -0.179 hviga 0.85	CDGinf (m) =0.050 hwiga 0.85	
	TÍCAS MECÁNICAS: SECCIÓN VIGA PREFABRICADA AISLADA		
PROPIEDADES BRUTAS: * PROPI	IEDADES NETAS:	* PROPIEDADES HOMOGENEIZADAS:	
REA (m²) 0.2976 ÁREA (m		ÁREA (m²) 0.3070	
CDG _{SUP} (m) 0.416 CDG _{SUP} (CDG _{NF} (m) -0.434 CDG _{NF} (CDG _{SUP} (m) 0.424 CDG _{INF} (m) -0.426	
		hγ (m ⁴) 0.030813	
114-7			
MÓDULOS RESISTENTES: MÓDU	JLOS RESISTENTES:	MÓDULOS RESISTENTES:	
d ₁ (m) = 0.000LOSA_SUP W ₁ (cm ³) = 0.000	$d_1 (m) = 0.000 LOSA_SUP$ $W_1 (cm^3) = 0.000$	d ₁ (m) = 0.000LOSA_SUP W ₁ (cm ³) = 0.000	
d2 (m) = 0.000 LOSA_INF	d2 (m) = 0.000 LOSA_INF	d2 (m) = 0.000 LOSA_NF	
$W_2 (cm^3) = 0.000$	$W_2 \text{ (cm}^3) = 0.000$ $d_3 \text{ (m)} = 0.414 \text{ VIGA_SUP}$	$W_2 \text{ (cm}^3) = 0.000$ $d_3 \text{ (m)} = 0.424 \text{ VIGA_SUP}$	
d ₁ (m) = 0.416 VIGA SUP			
d ₃ (m) = 0.416 VIGA_SUP W ₃ (cm ³) = 0.072694	$W_3 (cm^3) = 0.072680$	W ₃ (cm ³) = 0.072757	
W ₃ (cm ²) = 0.072694 d ₄ (m) = -0.384 PRET_INF	$W_3 \text{ (cm}^3) = 0.072680$ $d_4 \text{ (m)} = -0.386 \text{ PRET_INF}$	d ₄ (m) = -0.376 PRET_NF	
W ₃ (cm ³) = 0.072694 d ₄ (m) = -4.334 PRET_INF W ₄ (cm ³) = -0.078696 d ₅ (m) = -0.434 VIGA_INF	W ₃ (cm ³) = 0.072680 d ₄ (m) = -4.386 PRET_INF W ₄ (cm ²) = -0.077956 d ₅ (m) = -0.436 VIGA_INF	d _c (m) = -0.376 PRET_NF W ₄ (cm ³) = -0.081840 d ₅ (m) = -0.426 VIGA_INF	
W ₃ (cm ³) = 0.072994 d ₄ (cn) = 4.388 PRET_INF W ₄ (cm ³) = -2.072835 d ₅ (cn) = -0.0434 VIGA_INF W ₆ (cm ³) = -0.069852	W_3 (cm ²) = 0.072880 d_c (m) = 4.356 PRET_NF W_4 (cm ²) = -0.077955 d_5 (m) = -0.436 VIGA_NF W_6 (cm ²) = -0.066016	d ₄ (m) = -0.376 PRET_NF W ₄ (cm ³) = -0.081840	
W ₃ (cm ²) = 0.072564 d ₄ (cm ²) = -0.072555 W ₄ (cm ²) = -0.072555 d ₅ (cm ²) = -0.0434 VIGA_INF W ₈ (cm ²) = -0.069562	W ₃ (cm ³) = 0.072680 d ₄ (m) = -4.386 PRET_INF W ₄ (cm ²) = -0.077956 d ₅ (m) = -0.436 VIGA_INF	d _c (m) = -0.376 PRET_NF W ₄ (cm ³) = -0.081840 d ₅ (m) = -0.426 VIGA_INF	
W_3 (cm ²) = 0.072994 d_4 (m) = -4.388 PRET_INF W_4 (cm ²) = -0.076935 d_5 (m) = -0.434 VIGA_INF W_6 (cm ²) = -0.069692	W_3 (cm ²) = 0.072880 d_c (m) = 4.356 PRET_NF W_4 (cm ²) = -0.077955 d_5 (m) = -0.436 VIGA_NF W_6 (cm ²) = -0.066016	d _c (m) = -0.376 PRET_NF W ₄ (cm ³) = -0.081840 d ₅ (m) = -0.426 VIGA_INF	
W ₃ (cm ²) = 0.072994 d ₄ (m) = 4.384 PRET_INF W ₄ (cm ²) = -0.078939 d ₅ (m) = -0.0434 VIGA_INF W ₈ (cm ²) = -0.089592 DEFINICIÓN CARA	W_3 (cm ²) = 0.072880 d_c (m) = 4.356 PRET_NF W_4 (cm ²) = -0.077955 d_5 (m) = -0.436 VIGA_NF W_6 (cm ²) = -0.066016	d _c (m) = -0.376 PRET_NF W ₄ (cm ³) = -0.081840 d ₅ (m) = -0.426 VIGA_INF	
W ₃ (cm ²) = 0.072894 d ₄ (m) = -0.384 PRET_INF W ₄ (cm ²) = -0.078585 d ₅ (m) = -0.454 VIGA_INF W ₅ (cm ²) = -0.086862 DEFINICIÓN CARV TIPO VIGA A ANALIZAR: EXTERIOR CANTO LOSA(m) 0.26	W_3 (cm ²) = 0.072880 d_c (m) = 4.356 PRET_NF W_4 (cm ²) = -0.077955 d_5 (m) = -0.436 VIGA_NF W_6 (cm ²) = -0.066016	d _c (m) = -0.376 PRET_NF W ₄ (cm ³) = -0.081840 d ₅ (m) = -0.426 VIGA_INF	
W ₃ (cm ²) = 0.072694 d ₄ (m) = 4.384 PRET_INF W ₄ (cm ²) = -0.078595 d ₅ (m) = -0.078595 W ₅ (cm ²) = -0.069582 DEFINICIÓN CARV IPO VIGA A ANALIZAR: EXTERIOR CANTO LOSA(m) 0.28 PROPIEDADES BRUTAS: PROPI	W _y (cm²) = 0.072889 d _x (m) = 4.388 PRET_INF W _x (cm²) = 4.077085 d _y (m) = -0.077085 VGA_NF W _y (cm²) = -0.066016 ACTERÍSTICAS MECÁNICAS: SECCIÓN VIGA + LOSA	$\begin{split} \mathbf{d}_{_{\parallel}}(m) &= -0.376 \text{ PRET NF} \\ W_{_{\parallel}}(cm^2) &= -0.091840 \\ \mathbf{d}_{_{\parallel}}(m) &= -0.426 \text{ VIGA_NF} \\ W_{_{\parallel}}(cm^2) &= -0.072246 \end{split}$	
W ₃ (cm ³) = 0.072894 d ₁ (m) = -0.338 PRET_INF W ₄ (cm ³) = -0.078595 d ₂ (m) = -0.4334 VIGA_INF W ₅ (cm ³) = -0.088582 DEFINICIÓN CARA ITPO VIGA A ANALIZAR: EXTERIOR CANTO LOSA(m) 0.25 PROPIEDADES BRUTAS: * PROPIEDADES	W _y (cm²) = 0.072880	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
W ₃ (cm ²) = 0.072994	W _y (cm²) = 0.072880	d _s (m) = 0.316 PRET_NF W _s (cm) = 0.016 PRET_NF W _s (cm) = 0.0426 VIGA_NF W _s (cm) = -0.072246 *PROPIEDADES HOMOGENEIZADAS: AREA (m) 0.6331	
W ₃ (cm ²) = 0.072894	W _y (cm²) = 0.072880 d _x (m) = 4.388 PRET_NF W _x (cm²) = 4.077986 d _y (m) = -0.456 VIGA_NF W _y (cm²) = 4.068016 ACTERÍSTICAS MECÁNICAS: SECCIÓN VIGA + LOSA ACTERÍSTICAS MECÁNICAS: SECCIÓN VIGA + LOSA BEDADES NETAS: m²	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
W ₁ (cm ²) = 0.072694 d ₁ (m) = 0.4384 PRET_INF W ₁ (cm ²) = 0.0769582 DEFINICION CARV W ₁ (cm ²) = 0.069582 DEFINICION CARV TIPO VIGA A ANALIZAR: EXTENOR CANTO LOSA(m) 0.25 PROPIEDADES BRUTAS: * **PROPIEDADES BRUTAS: * **PROPIEDADE	W ₁ (cm ²) = 0.072889	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
W ₁ (cm ²) = 0.075994 d ₁ (cn ²) = -0.075994 d ₂ (cm ²) = -0.075959 W ₄ (cm ²) = -0.075959 W ₅ (cm ²) = -0.075959 DEFINICIÓN CARZ TIPO VISA ANALIZAR: EXTENIOR CANTO LOSA(m) 0.25 PROPIEDADES BRUTAS:	W ₁ (cm ²) = 0.077889	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
W ₃ (cm ²) = 0.073694 d ₄ (cm) = 0.073695 d ₄ (cm ²) = 0.073695 d ₅ (cm ²) = 0.04384 V ₄ (cm ²) = 0.04384 V ₄ (cm ²) = 0.04384 V ₄ (cm ²) = 0.04385 V ₄ (cm ²) = 0.04385 DEFINICIÓN CARZ TPO VIGA A ANALIZAR: EXTERIOR CANTO LOSA(m) 0.25 PROPIEDADES BRUTAS:	W _S (cm ²) = 0.077889 d ₄ (m) = .0.389 PRET_NF W _S (cm ²) = -0.077959 d ₅ (m) = -0.077959 V _S (cm ²) = 0.077959 ACTENISTICAS MECÁNICAS: SECCIÓN VIGA + LOSA (m) = 0.374 LOSA_SUP W _S (cm ²) = 0.214012	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
W ₁ (cm ²) = 0.072694 d ₁ (m) = 4.088 PRET_INF W ₁ (cm ²) = 4.076385 d ₂ (m) = 0.438 VIGA_INF W ₃ (cm ²) = 0.059582 DEFINICIÓN CARZ TIPO VISIA A ANALIZAR: EXTENIOR CANTO LOSA(m) 0.25 PROPIEDADES BRUTAS: **PROPIEDADES BRUTAS: **PROPIEDA	W ₁ (cm ²) = 0.077889	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
W ₃ (cm ²) = 0.072994	W ₁ (cm ²) = 0.072880	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
W ₁ (cm ²) = 0.072694 d ₁ (m) = 4.088 PRET_INF W ₁ (cm ²) = 4.076385 d ₂ (m) = 0.438 VIGA_INF W ₃ (cm ²) = 0.059582 DEFINICIÓN CARZ TIPO VISIA A ANALIZAR: EXTENIOR CANTO LOSA(m) 0.25 PROPIEDADES BRUTAS: **PROPIEDADES BRUTAS: **PROPIEDA	W ₁ (cm ²) = 0.077889	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
W ₃ (cm ²) = 0.072894 d ₄ (cm) = 4.038 PRET_INF W ₄ (cm ²) = -0.27838 d ₅ (cm) = -0.434 VIGA_INF W ₅ (cm ²) = -0.059582 DEFINICIÓN CARV TIPO VIGA A ANALUZAR: EXTERIOR CANTO LOSA(m) 0.25 PROPIEDADES BRUTAS:	W _y (cm²) = 0.077889 d _x (m) = -0.07789 d _y (cm²) = -0.077989 d _y (cm²) = -0.077989 d _y (cm²) = -0.056016 W _y (cm²) = 0.056016 ACTENISTICAS MECÁNICAS: SECCIÓN VIGA + LOSA (m²) - 0.052056	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
W ₁ (cm ²) = 0.072894 d ₁ (m) = 0.0388 PRET_INF W ₂ (cm ²) = 0.02838 d ₂ (m) = 0.0384 VIGA_INF W ₃ (cm ²) = 0.069882 DEFINCIÓN CARI TIPO VIGA A AMAJIZAR: EXTERIOR CANTO LOSA(m) 0.25 ROPIEDADES BRUTAS: PROPIL PAGE PAGE PAGE MODULOS RESISTENTES: MODULOS RESISTENTES: MODULOS RESISTENTES: MODULOS d ₁ (m) = 0.376 C.05A_SUP W ₁ (cm ²) = 0.211014 d ₂ (m) = 0.128 U.SA_SUP W ₃ (cm ²) = 0.053040 d ₄ (m) = 0.128 VIGA_SUP W ₃ (cm ²) = 0.053040 d ₄ (m) = 0.3724 VIGA_SUP W ₄ (cm ²) = 0.4724 VIGA_SUP	W ₁ (cm ²) = 0.072880	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
W ₁ (cm ²) = 0.07894 d ₁ (m) = 4.388 PRET_INF W ₂ (cm ²) = 4.0786582 **TIPO VIGA A MAUZAR: EXTERIOR CANTO LOSA(m) 0.25 **ROPIEDADES BRUTAS: **PROPIL EA (cm ²) 0.6286 AREA (cm ²) AREA (cm ²) 0.0786 CDG _{min} (cm ²) 0.0786 CDG _{min} (cm ²) 0.07906 Inγ (cm ²) 0.07906	W ₁ (cm ²) = 0.072880	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
W ₁ (cm ²) = 0.072894	W ₁ (cm ²) = 0.072880	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
W ₃ (cm²) = 0.072894	W _y (cm²) = 0.072880	$\begin{aligned} d_{s}(m) &= & 0.376 \text{ PRET. NF} \\ W_{b}(cmr^{2}) &= 0.018140 \\ d_{b}(m) &= & 0.426 \text{ VISA_NF} \\ W_{b}(cmr^{2}) &= & -0.072246 \end{aligned}$	
W ₁ (cm ²) = 0.07894	W ₁ (cm ²) = 0.072880	$\begin{aligned} d_{s}(m) &= & 0.376 \text{ PRET. NF} \\ W_{b}(cmr^{2}) &= 0.018140 \\ d_{b}(m) &= & 0.426 \text{ VISA_NF} \\ W_{b}(cmr^{2}) &= & -0.072246 \end{aligned}$	
W ₁ (cm ²) = 0.072694	W _y (cm²) = 0.072880	$\begin{aligned} d_{s}(m) &= & 0.376 \text{ PRET. NF} \\ W_{b}(cmr^{2}) &= 0.018140 \\ d_{b}(m) &= & 0.426 \text{ VISA_NF} \\ W_{b}(cmr^{2}) &= & -0.072246 \end{aligned}$	
W ₁ (cm ²) = 0.078984 W ₂ (cm ²) = 0.078985 W ₃ (cm ²) = 0.0434 VIGA_NF W ₃ (cm ²) = 0.0434 VIGA_NF W ₃ (cm ²) = 0.059882 DEFINICIÓN CARZ TIPO VIGA A ANALIZZR: EXTERIOR CANTO LOSA(m) 0.25 CANTO LOSA(m) 0.276 COSque (m) 0.376 COSque (m)	W _y (cm²) = 0.072880	$\begin{aligned} d_{s}(m) &= & 0.376 \text{ PRET. NF} \\ W_{b}(cmr^{2}) &= 0.018140 \\ d_{b}(m) &= & 0.426 \text{ VISA_NF} \\ W_{b}(cmr^{2}) &= & -0.072246 \end{aligned}$	
W _s (cm ²) = 0.072894 Q _s (cm) = 0.04384 VIGA_NF W _s (cm ²) = 0.059582 W _s (cm ²) = 0.059582 DEFINICIÓN CARZ TIPO VIGA A ANALIZAR: EXTERIOR CANTO LOSA(m) 0.25 PROPIEDADES BRUTAS:	W _y (cm²) = 0.072880	$\begin{aligned} d_{s}(m) &= & 0.376 \text{ PRET. NF} \\ W_{b}(cmr^{2}) &= 0.018140 \\ d_{b}(m) &= & 0.426 \text{ VISA_NF} \\ W_{b}(cmr^{2}) &= & -0.072246 \end{aligned}$	
W ₁ (cm ²) = 0.07894	W _y (cm²) = 0.072880	$\begin{aligned} d_{s}(m) &= & 0.376 \text{ PRET. NF} \\ W_{b}(cmr^{2}) &= 0.018140 \\ d_{b}(m) &= & 0.426 \text{ VISA_NF} \\ W_{b}(cmr^{2}) &= & -0.072246 \end{aligned}$	
W ₁ (cm ²) = 0.072994	W _y (cm²) = 0.072880	$\begin{aligned} d_{s}(m) &= & 0.376 \text{ PRET. NF} \\ W_{b}(cmr^{2}) &= 0.018140 \\ d_{b}(m) &= & 0.426 \text{ VISA_NF} \\ W_{b}(cmr^{2}) &= & -0.072246 \end{aligned}$	
W _s (cm ²) = 0.072894 W _s (cm ²) = 0.07894 W _s (cm ²) = 0.0843 VIGA_NF W _s (cm ²) = 0.089822	W _y (cm²) = 0.072880	$\begin{aligned} d_{s}(m) &= & 0.376 \text{ PRET. NF} \\ W_{b}(cmr^{2}) &= 0.018140 \\ d_{b}(m) &= & 0.426 \text{ VISA_NF} \\ W_{b}(cmr^{2}) &= & -0.072246 \end{aligned}$	
W ₁ (cm ²) = 0.07894	W _y (cm²) = 0.072880	$\begin{aligned} d_{s}(m) &= & 0.376 \text{ PRET. NF} \\ W_{b}(cmr^{2}) &= 0.018140 \\ d_{b}(m) &= & 0.426 \text{ VISA_NF} \\ W_{b}(cmr^{2}) &= & -0.072246 \end{aligned}$	
W ₁ (cm ²) = 0.072994 d ₁ (cm) = 0.4384 PRET NF W ₂ (cm ²) = 0.078985 d ₂ (cm) = 0.4384 VISA_NF W ₃ (cm ²) = 0.089892 DEFINCIÓN CARZ TIPO VISA A ANALIZAR: EXTENOR CANTO LOSA(m) 0.25 PROPIEDADES BRUTAS: PROPIEDADES BRUTAS: CANTO LOSA(m) 0.25 PROPIEDADES BRUTAS: PROPIEDADES BRUTAS: CANTO LOSA(m) 0.276 COG _{main} (m) 0.376 COG _{main} (m) 0.476 COG _{main} (m) 0.476 COG _{main} (m) 0.79296 W ₁ (cm ²) = 0.211014 d ₂ (m) = 0.376LOSA_NF W ₂ (cm ²) = 0.212014 d ₂ (m) = 0.1781 d ₃ (m) = 0.38040 d ₄ (m) = 0.38040 d ₄ (m) = 0.4074 PRET_INF W ₅ (cm ²) = 0.4074 PRET_INF W ₆ (cm ²) = 0.4724 VISA_NF W ₅ (cm ²) = 0.4724 VI	W _y (cm²) = 0.072880	$\begin{aligned} d_{s}(m) &= & 0.376 \text{ PRET. NF} \\ W_{b}(cmr^{2}) &= 0.018140 \\ d_{b}(m) &= & 0.426 \text{ VISA_NF} \\ W_{b}(cmr^{2}) &= & -0.072246 \end{aligned}$	
W ₁ (cm ²) = 0.072894 W ₂ (cm ²) = 0.078982 W ₃ (cm ²) = 0.038982 W ₄ (cm ²) = 0.038982 W ₅ (cm ²) = 0.038982 W ₅ (cm ²) = 0.038982 PROPIEDACES BRUTAS: PROPIEDACES BRUTAS: CANTO LOSA(m) 0.25 REA (m ²) 0.6288 AREA (m COS _{min} 0.76 O.7798 O.7798 O.7799 O.779 O.7798 O.779998 I ₁ v ₁ (m ²) MODULOS RESISTENTES: MODULOS RESISTENTES: MODULOS RESISTENTES: MODULOS RESISTENTES: MODULOS RESISTENTES: W ₁ (cm ²) = 0.21014 d ₂ (m) = 0.376 LOSA_SUP W ₁ (cm ²) = 0.21014 d ₂ (m) = 0.128 LOSA_INF W ₂ (cm ²) = 0.303040 d ₄ (m) = 0.427 VIGA_BUP W ₅ (cm ²) = 0.21014 d ₄ (m) = 0.478 VIGA_BUP W ₅ (cm ²) = 0.21014 d ₄ (m) = 0.478 VIGA_BUP W ₅ (cm ²) = 0.21014 d ₄ (m) = 0.728 VIGA_BUP W ₅ (cm ²) = 0.21014 d ₄ (m) = 0.378 VIGA_BUP W ₅ (cm ²) = 0.21014 d ₄ (m) = 0.728 VIGA_BUP W ₅ (cm ²) = 0.21014 d ₄ (m) = 0.728 VIGA_BUP W ₅ (cm ²) = 0.21014 d ₄ (m) = 0.728 VIGA_BUP W ₅ (cm ²) = 0.21014 d ₄ (m) = 0.728 VIGA_BUP W ₅ (cm ²) = 0.21014 d ₄ (m) = 0.728 VIGA_BUP W ₅ (cm ²) = 0.21014 d ₄ (m) = 0.728 VIGA_BUP W ₅ (cm ²) = 0.21014 d ₄ (m) = 0.728 VIGA_BUP W ₅ (cm ²) = 0.21014 d ₄ (m) = 0.728 VIGA_BUP W ₅ (cm ²) = 0.21014 d ₄ (m) = 0.728 VIGA_BUP W ₅ (cm ²) = 0.21014 d ₄ (m) = 0.728 VIGA_BUP W ₅ (cm ²) = 0.21014 d ₄ (m) = 0.728 VIGA_BUP W ₅ (cm ²) = 0.	W _y (cm²) = 0.072880	$\begin{aligned} d_{s}(m) &= & 0.376 \text{ PRET. NF} \\ W_{b}(cmr^{2}) &= 0.018140 \\ d_{b}(m) &= & 0.426 \text{ VISA_NF} \\ W_{b}(cmr^{2}) &= & -0.072246 \end{aligned}$	
W _s (cm ²) = 0.072864	W _y (cm²) = 0.072880	$\begin{aligned} d_{s}(m) &= & 0.376 \text{ PRET. NF} \\ W_{b}(cmr^{2}) &= 0.018140 \\ d_{b}(m) &= & 0.426 \text{ VISA_NF} \\ W_{b}(cmr^{2}) &= & -0.072246 \end{aligned}$	
W _s (cm²) = 0.07894	W _y (cm²) = 0.072880	$\begin{aligned} d_{s}(m) &= & 0.376 \text{ PRET. NF} \\ W_{b}(cmr^{2}) &= 0.018140 \\ d_{b}(m) &= & 0.426 \text{ VISA_NF} \\ W_{b}(cmr^{2}) &= & -0.072246 \end{aligned}$	
W ₁ (cm ²) = 0.07894	W ₁ (cm²) = 0.072880 d ₄ (m) = 0.388 PRET_NF W ₁ (cm²) = 0.07395 d ₅ (m) = 0.07395 VIGA_NF W ₆ (cm²) = 0.056016 ACTERISTIGAS MECÁNICAS: SECCIÓN VIGA + LOSA (m) 0.5288 (m) 0.52886 (m) 0.078711 ALOS RESISTENTES: d ₁ (m) = 0.3744 LOSA_SUP W ₁ (cm²) = 0.216412 (2 (m) = 0.216412 W ₂ (cm²) = 0.053455 W ₃ (cm²) = 0.053455 W ₄ (cm²) = 0.053455 U ₅ (m) = 0.424 VIGA_SUP W ₄ (cm²) = 0.414650 U ₅ (m) = 0.4278 PRET_INF W ₄ (cm²) = 0.116450 U ₅ (m) = 0.4728 VIGA_INF W ₅ (cm²) = 0.116450 U ₅ (m) = 0.4728 VIGA_INF W ₅ (cm²) = 0.116450 U ₅ (m) = 0.478 VIGA_INF W ₅ (cm²) = 0.116450 U ₅ (m) = 0.478 VIGA_INF U ₅ (cm²) = 0.116450 U ₅ (cm²) = 0.478 VIGA_INF U ₅ (cm²) = 0.4880000000000000000000000000000000000	d ₁ (m) = 0.376 PRET_NF W ₄ (cm²) = 0.018140 d ₅ (m) = 0.026 VIGA_NF W ₆ (cm²) = -0.072246 *PROPIEDADES HOMOGENEZADAS: APEA (m²) 0.5381 CDG ₁₀₀ (m) 0.384 CDG ₁₀₀ (m) 0.384 CDG ₁₀₀ = 0.082042 MODULOS RESISTENTES: d ₁ (m) = 0.384LOSA_SUP W ₁ (cm²) = 0.013108 d ₂ (m) = 0.134 VGA_SUP W ₂ (cm²) = 0.613219 d ₃ (m) = 0.334 VGA_SUP W ₃ (cm²) = 0.613219 d ₄ (m) = 0.612219 d ₅ (m) = 0.174 VGA_NF W ₄ (cm²) = 0.174 VGA_NF W ₄ (cm²) = 0.176 VGA_NF W ₅ (cm²) = 0.125447 d ₅ (m) = 0.12547	
W ₁ (cm ²) = 0.072694	W ₁ (cm²) = 0.077895 d ₁ (m) = 0.077959 d ₂ (m) = 0.077959 d ₂ (m) = 0.07395 V ₃ (cm²) = 0.068016 V ₄ (cm²) = 0.068016 V ₅ (cm²) = 0.068016 V ₆ (cm²) = 0.068016 V ₇ (cm²) = 0.074 V ₈ (cm²) = 0.074 V ₈ (cm²) = 0.083055 d ₁ (m) = 0.074 V ₈ (cm²) = 0.054055 d ₂ (m) = 0.04405 V ₈ (cm²) = 0.054055 d ₃ (m) = 0.074 V ₈ (cm²) = 0.054055 d ₄ (m) = 0.074 V ₈ (cm²) = 0.054055 d ₄ (m) = 0.074 V ₈ (cm²) = 0.054055 d ₄ (m) = 0.074 V ₈ (cm²) = 0.054055 d ₄ (m) = 0.074 V ₈ (cm²) = 0.054055 d ₄ (m) = 0.074 V ₈ (cm²) = 0.054055 d ₄ (m) = 0.072 V ₈ (cm²) = 0.054055 d ₄ (m) = 0.072 V ₈ (cm²) = 0.054055 d ₈ (m) = 0.072 V ₈ (cm²) = 0.054055 d ₈ (m) = 0.072 V ₈ (cm²) = 0.054055 d ₈ (m) = 0.072 V ₈ (cm²) = 0.054055 d ₈ (m) = 0.072 V ₈ (cm²) = 0.054055 d ₈ (m) = 0.072 d ₈ (m) =	d ₁ (m) = 0.376 PRET_NF W ₄ (cm²) = 0.018140 d ₅ (m) = 0.426 VISA_NF W ₆ (cm²) = -0.072246 **PROPIEDADES HOMOGENEZADAS: AREA (m²) 0.8381 CDG ₁₀ (m) 0.384 CDG ₁₀ 0.082042 MODULOS RESISTENTES: d ₁ (m) = 0.384 LOSA_SUP W ₁ (cm²) = 0.213788 Q ₂ (m) 0.082319 d ₃ (m) = 0.4374 CAS_AUP W ₃ (cm²) = 0.612319 d ₄ (m) = 0.3474 CAS_AUP W ₃ (cm²) = 0.123447 d ₅ (m) = -4.716 VISA_NF W ₅ (cm²) = 0.114550 **Typk**	
W ₁ (cm ²) = 0.072694 d ₁ (cm) = 0.078695 d ₂ (cm) = 0.078695 d ₃ (cm) = 0.04384 VIGA_NF W ₄ (cm ²) = 0.068682 DEFINICIÓN CARZ TPO VIGA A ANALIZAR: EXTERIOR CANTO LOGA(m)	W ₁ (cm²) = 0.077895 d ₁ (m) = 0.077959 d ₂ (m) = 0.077959 d ₂ (m) = 0.07395 V ₃ (cm²) = 0.068016 V ₄ (cm²) = 0.068016 V ₅ (cm²) = 0.068016 V ₆ (cm²) = 0.068016 V ₇ (cm²) = 0.074 V ₈ (cm²) = 0.074 V ₈ (cm²) = 0.083055 d ₁ (m) = 0.074 V ₈ (cm²) = 0.054055 d ₂ (m) = 0.04405 V ₈ (cm²) = 0.054055 d ₃ (m) = 0.074 V ₈ (cm²) = 0.054055 d ₄ (m) = 0.074 V ₈ (cm²) = 0.054055 d ₄ (m) = 0.074 V ₈ (cm²) = 0.054055 d ₄ (m) = 0.074 V ₈ (cm²) = 0.054055 d ₄ (m) = 0.074 V ₈ (cm²) = 0.054055 d ₄ (m) = 0.074 V ₈ (cm²) = 0.054055 d ₄ (m) = 0.072 V ₈ (cm²) = 0.054055 d ₄ (m) = 0.072 V ₈ (cm²) = 0.054055 d ₈ (m) = 0.072 V ₈ (cm²) = 0.054055 d ₈ (m) = 0.072 V ₈ (cm²) = 0.054055 d ₈ (m) = 0.072 V ₈ (cm²) = 0.054055 d ₈ (m) = 0.072 V ₈ (cm²) = 0.054055 d ₈ (m) = 0.072 d ₈ (m) =	d ₁ (m) = 0.376 PRET_NF W ₄ (cm²) = 0.018140 d ₅ (m) = 0.426 VISA_NF W ₆ (cm²) = -0.072246 **PROPIEDADES HOMOGENEZADAS: AREA (m²) 0.8381 CDG ₁₀ (m) 0.384 CDG ₁₀ 0.082042 MODULOS RESISTENTES: d ₁ (m) = 0.384 LOSA_SUP W ₁ (cm²) = 0.213788 Q ₂ (m) 0.082319 d ₃ (m) = 0.4374 CAS_AUP W ₃ (cm²) = 0.612319 d ₄ (m) = 0.3474 CAS_AUP W ₃ (cm²) = 0.123447 d ₅ (m) = -4.716 VISA_NF W ₅ (cm²) = 0.114550 **Typk**	
W ₁ (cm ²) = 0.072894 d ₁ (m) = 0.4384 PRET_INF W ₂ (cm ²) = 0.078952 W ₃ (cm ²) = 0.069852 DEFINICION CARR W ₃ (cm ²) = 0.069852 TIPO VIGA A AMALIZAR: EXTERIOR CANTO LOSA(m)	W ₁ (cm²) = 0.077895 d ₁ (m) = 0.077959 d ₂ (m) = 0.077959 d ₂ (m) = 0.07395 V ₃ (cm²) = 0.068016 V ₄ (cm²) = 0.068016 V ₅ (cm²) = 0.068016 V ₆ (cm²) = 0.068016 V ₇ (cm²) = 0.074 V ₈ (cm²) = 0.074 V ₈ (cm²) = 0.083055 d ₁ (m) = 0.074 V ₈ (cm²) = 0.054055 d ₂ (m) = 0.04405 V ₈ (cm²) = 0.054055 d ₃ (m) = 0.074 V ₈ (cm²) = 0.054055 d ₄ (m) = 0.074 V ₈ (cm²) = 0.054055 d ₄ (m) = 0.074 V ₈ (cm²) = 0.054055 d ₄ (m) = 0.074 V ₈ (cm²) = 0.054055 d ₄ (m) = 0.074 V ₈ (cm²) = 0.054055 d ₄ (m) = 0.074 V ₈ (cm²) = 0.054055 d ₄ (m) = 0.072 V ₈ (cm²) = 0.054055 d ₄ (m) = 0.072 V ₈ (cm²) = 0.054055 d ₈ (m) = 0.072 V ₈ (cm²) = 0.054055 d ₈ (m) = 0.072 V ₈ (cm²) = 0.054055 d ₈ (m) = 0.072 V ₈ (cm²) = 0.054055 d ₈ (m) = 0.072 V ₈ (cm²) = 0.054055 d ₈ (m) = 0.072 d ₈ (m) =	d ₁ (m) = 0.376 PRET_NF W ₄ (cm²) = 0.018140 d ₅ (m) = 0.426 VISA_NF W ₆ (cm²) = -0.072246 **PROPIEDADES HOMOGENEZADAS: AREA (m²) 0.8381 CDG ₁₀ (m) 0.384 CDG ₁₀ 0.082042 MODULOS RESISTENTES: d ₁ (m) = 0.384 LOSA_SUP W ₁ (cm²) = 0.213788 Q ₂ (m) 0.082319 d ₃ (m) = 0.4374 CAS_AUP W ₃ (cm²) = 0.612319 d ₄ (m) = 0.3474 CAS_AUP W ₃ (cm²) = 0.123447 d ₅ (m) = -4.716 VISA_NF W ₅ (cm²) = 0.114550 **Typk**	
W ₁ (cm ²) = 0.078984	W ₁ (cm²) = 0.077895 d ₁ (m) = 0.077959 d ₂ (m) = 0.077959 d ₂ (m) = 0.07395 V ₃ (cm²) = 0.068016 V ₄ (cm²) = 0.068016 V ₅ (cm²) = 0.068016 V ₆ (cm²) = 0.068016 V ₇ (cm²) = 0.074 V ₈ (cm²) = 0.074 V ₈ (cm²) = 0.083055 d ₁ (m) = 0.074 V ₈ (cm²) = 0.054055 d ₂ (m) = 0.04405 V ₈ (cm²) = 0.054055 d ₃ (m) = 0.074 V ₈ (cm²) = 0.054055 d ₄ (m) = 0.074 V ₈ (cm²) = 0.054055 d ₄ (m) = 0.074 V ₈ (cm²) = 0.054055 d ₄ (m) = 0.074 V ₈ (cm²) = 0.054055 d ₄ (m) = 0.074 V ₈ (cm²) = 0.054055 d ₄ (m) = 0.074 V ₈ (cm²) = 0.054055 d ₄ (m) = 0.072 V ₈ (cm²) = 0.054055 d ₄ (m) = 0.072 V ₈ (cm²) = 0.054055 d ₈ (m) = 0.072 V ₈ (cm²) = 0.054055 d ₈ (m) = 0.072 V ₈ (cm²) = 0.054055 d ₈ (m) = 0.072 V ₈ (cm²) = 0.054055 d ₈ (m) = 0.072 V ₈ (cm²) = 0.054055 d ₈ (m) = 0.072 d ₈ (m) =	d ₁ (m) = 0.376 PRET_NF W ₄ (cm²) = 0.018140 d ₅ (m) = 0.426 VISA_NF W ₆ (cm²) = -0.072246 **PROPIEDADES HOMOGENEZADAS: AREA (m²) 0.8381 CDG ₁₀ (m) 0.384 CDG ₁₀ 0.082042 MODULOS RESISTENTES: d ₁ (m) = 0.384 LOSA_SUP W ₁ (cm²) = 0.213788 Q ₂ (m) 0.082319 d ₃ (m) = 0.4374 CAS_AUP W ₃ (cm²) = 0.612319 d ₄ (m) = 0.3474 CAS_AUP W ₃ (cm²) = 0.123447 d ₅ (m) = -4.716 VISA_NF W ₅ (cm²) = 0.114550 **Typk**	
W ₃ (cm ²) = 0.072894	W ₁ (cm ²) = 0.072880	d ₁ (m) = 0.316 PRET NF W ₄ (cm²) = 0.018140 d ₅ (m) = 0.426 VISA_INF W ₆ (cm²) = -0.072246 *PROPIEDADES HOMOGENEZADAS: AREA (m²) 0.6381 CDG ₁₀ (m) 0.384 CDG ₁₀ = 0.3841.0SA SUP W ₁ (cm²) = 0.213786 d ₂ (m) = 0.314 USA_INF W ₂ (cm²) = 0.613219 d ₃ (m) = 0.314 VISA_SUP W ₃ (cm²) = 0.613219 d ₄ (m) = 0.438 PRET_INF W ₄ (cm²) = 0.12147 d ₄ (m) = 0.12147 d ₅ (m) = 0.12147 d ₆ (m) = 0.326 PRET_INF W ₅ (cm²) = 0.12547 d ₆ (m) = 0.316 VISA_INF W ₅ (cm²) = 0.12147 d ₇ (m) = 0.12147 d ₈ (m) = 0.1214550	
Wy, (cm²) = 0.072694 DEFINICION CARZ Wy, (cm²) = 0.088682 DEFINICION CARZ TIPO VIGA ANALIZAR: EXTERIOR CANTO LOSA(m) 0.25 DEFINICION CARZ TIPO VIGA ANALIZAR: EXTERIOR CANTO LOSA(m) 0.25 DEFINICION CARZ TIPO VIGA ANALIZAR: EXTERIOR CANTO LOSA(m) 0.25 DEFINICION CARZ OPERATOR 0.288	W ₁ (cm ²) = 0.072880	d _s (m) = 0.376 PRET_NF W _s (cm²) = 0.018140 d _s (m) = 0.426 VIGA_NF W _s (cm²) = 0.072246 *PROPIEDADES HOMOGENEZADAS: APEA (m²) 0.6531 CDG _{sur} (m) 0.384 CDG _{sur} (m) 0.384 CDG _{sur} (m) 0.384 CDG _{sur} (m) 0.384 MODULOS RESISTENTES: d _s (m) = 0.384LOSA_SUP W _s (cm²) = 0.134 LOSA_NF W _s (cm²) = 0.613219 d _s (m) = 0.34 VIGA_SUP W _s (cm²) = 0.613219 W _s (cm²) = 0.613219 y _s (cm²) = 0.613219 y _s (cm²) = 0.176 VIGA_NF W _s (cm²) = 0.176 VIGA_NF W _s (cm²) = 0.12447 d _s (m) = 0.12447 d _s (m) = 0.12547 d _s (m) = 0.12447 d _s (m)	

PROYECTO:


FECHA: HOJA: DE

ENVOLVENTE TENSIONES

			COMBINA	CIÓN ELS TE	RANSITORIA:	PROCEDIMI	ENTO CONST	RUCTIVO		
		COMP	ROBACIÓN EN	IVACÍO			COMPROBAC	IÓN HORMIG	ONADO LOSA	١
	FIBRA 1	FIBRA 2	FIBRA 3	FIBRA 4	FIBRA 5	FIBRA 1	FIBRA 2	FIBRA 3	FIBRA 4	FIBRA 5
X (m)	σ (MPa)	σ (MPa)	σ (MPa)	σ (MPa)	σ (MPa)	σ (MPa)	σ (MPa)	σ (MPa)	σ (MPa)	σ (MPa)
-0.400			0.00	0.00	0.00			0.00	0.00	0.0
0.000			0.29	4.57	4.84			0.29	4.31	4.5
0.413			0.95	8.95	9.46			1.41	8.00	8.4
0.825			1,34	9.76	10.29			2,29	8,31	8.6
1.238			1.64	9.48	9.97			3.05	7.63	7.9
1.650			1.93	9.22	9.67			3.79	6.96	7.1
2.063			2,19	8,97	9.40			4.45	6.36	6.4
2.475			1.79	10.26	10.79			4.48	7.21	7.3
2,888			2,02	11.04	11,61			5.07	7.62	7.7
3.300			2.23	11.14	11.70			5.64	7.39	7.5
3.713			2.44	10.95	11.49			6.14	6.93	6.9
4.125			2.25	11.19	11.75			6.29	6.86	6.9
4.538			2,39	12,06	12,66			6,68	7.45	7,5
4.950			2,50	12,95	13,61			7.05	8.07	8.1
5.363			2.62	12.99	13.63			7.36	7.93	7.9
5,775			2,73	12,88	13,52			7.67	7.64	7.6
6.188			2.83	12.79	13.42			7.91	7.43	7.4
6.600			2,91	12,72	13,33			8,13	7,23	7.1
7.013			2.97	12.67	13.27			8.28	7.09	7.0
7.425			3.01	12.63	13.23			8.40	6.98	6.8
7.838			3.04	12,60	13,20			8.46	6.93	6.8
8,250			3,05	12.59	13,19			8,50	6.90	6.8

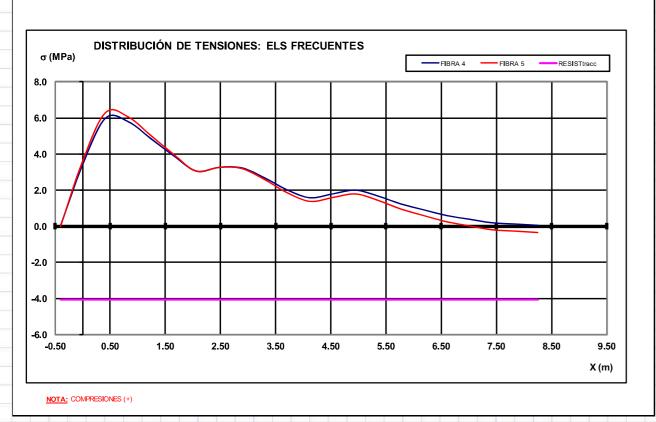
MÁX	MÍN	MÁX	MÍN	RESIST
FIBRA 3	FIBRA 3	FIBRA 5	FIBRA 5	fctm,fl
σ (MPa)	σ (MPa)	σ (MPa)	σ (MPa)	σ(Ι
0.00	0.00	0.00	0.00	-2
0.29	0.29	4.84	4.56	-2
1.41	0.95	9.46	8.42	-2
2,29	1,34	10.29	8,69	-2
3.05	1.64	9.97	7.92	-2
3.79	1.93	9.67	7.16	-2
4.45	2,19	9.40	6.48	-2
4.48	1.79	10.79	7.38	-2
5.07	2,02	11.61	7.78	-2
5.64	2.23	11.70	7.50	-2
6.14	2.44	11.49	6.98	-2
6.29	2.25	11.75	6.90	-2
6,68	2,39	12,66	7.50	-2
7.05	2,50	13,61	8.14	-2
7.36	2.62	13.63	7.96	-2
7.67	2.73	13,52	7.64	-2
7.91	2.83	13.42	7.40	-2
8,13	2,91	13,33	7,17	-2
8.28	2.97	13.27	7.02	-2
8.40	3.01	13.23	6.89	-2
8.46	3.04	13,20	6.84	-2
8.50	3.05	13.19	6.80	-2

fctm,fl,tesado	fck,tesac	lo (MPa
σ (MPa)	σ cm ax	MÍN.
-2.70	15.00	25.0
-2.70	15.00	25.0
-2.70	15.00	25.0
-2.70	15,00	25.0
-2.70	15.00	25.0
-2.70	15.00	25.0
-2.70	15,00	25.0
-2.70	15.00	25.0
-2.70	15,00	25.0
-2.70	15.00	25.0
-2.70	15.00	25.0
-2.70	15.00	25.0
-2.70	15,00	25.0
-2.70	15.00	25.0
-2.70	15.00	25.0
-2.70	15,00	25.0
-2.70	15.00	25.0
-2.70	15,00	25.0
-2.70	15.00	25.0
-2.70	15.00	25.0
-2.70	15.00	25.0
-2.70	15.00	25.0
COMP, MÁX =	13.63	MPa

NOTA: COMPRESIONES (+)

FECHA: HOJA: DE

	COMBINACIÓN ELS FRECUENTE							
	Comb.	ELS B2	Comb.	ELS B3	Comb.	ELS B4		
A 5	FIBRA 4	FIBRA 5	FIBRA 4	FIBRA 5	FIBRA 4	FIBRA 5		
Pa)	σ (MPa)	σ (MPa)	σ (MPa)	σ (MPa)	σ (MPa)	σ (MPa)		
0.00	0.00	0.00	0.00	0.00	0.00	0.00		


	Comb.	ELS B1	Comb.	ELS B2	Comb.	ELS B3	Comb.	ELS B4
	FIBRA 4	FIBRA 5						
X (m)	σ (MPa)							
-0.400	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
0.000	4.14	4.38	4.19	4.43	3.41	3.60	3.46	3.65
0.413	7.40	7.77	7.59	7.98	5.99	6.29	6.18	6.50
0.825	7.31	7.62	7.69	8.03	5.81	6.06	6.19	6.47
1.238	6.28	6.48	6.84	7.09	4.87	5.03	5.43	5.64
1.650	5.24	5.34	6.01	6.16	3.91	3.99	4.68	4.8
2.063	4.31	4.31	5.26	5.34	3.06	3.06	4.01	4.08
2.475	4.74	4.76	5.89	5.99	3.27	3.26	4.41	4.49
2.888	4.81	4.80	6.14	6.23	3.24	3.21	4.56	4.6
3,300	4.25	4.16	5.76	5.80	2.68	2.59	4.20	4.23
3.713	3.51	3.36	5.21	5.17	2.01	1.86	3.70	3.68
4.125	3.12	2.92	5.00	4.95	1.58	1.39	3.46	3.4
4.538	3.46	3.26	5.47	5.42	1.79	1.60	3.80	3.70
4.950	3.79	3.59	5.97	5.93	2.00	1.80	4.17	4.13
5.363	3.45	3.21	5.74	5.68	1.67	1.43	3.96	3.9
5.775	2.98	2.69	5.39	5.28	1.23	0.96	3.64	3.5
6.188	2.63	2.30	5.13	5.00	0.90	0.60	3.41	3.29
6.600	2.29	1.93	4.88	4.71	0.59	0.26	3.18	3.04
7.013	2.06	1.68	4.71	4.53	0.38	0.03	3.03	2.8
7.425	1.85	1.45	4.57	4.37	0.18	-0.18	2.90	2.73
7.838	1.78	1.36	4.51	4.31	0.11	-0.26	2.85	2.6
8.250	1.70	1.28	4.46	4.25	0.04	-0.34	2.80	2.63

σ (MPa) σ (MPa) 0.00 0.00 3.41 3.60 5.99 6.29 5.81 6.06 4.87 5.03 3.91 3.99 3.06 3.06 3.27 3.26 3.24 3.21 2.68 2.59 2.01 1.86 1.58 1.39 4.07 2.00 1.80 1.67 1.43 1.23 0.96 0.90 0.60 0.59 0.26 0.38 0.03 0.11 -0.26 0.04 -0.34	IDIO	TIBIOTO	
3.41 3.60 -4.07 5.99 6.29 -4.07 5.81 6.06 -4.07 4.87 5.03 -4.07 3.91 3.99 -4.07 3.06 3.06 3.27 3.26 -4.07 3.24 3.21 -4.07 2.68 2.59 -4.07 2.01 1.86 -4.07 1.58 1.39 -4.07 2.00 1.80 -4.07 2.00 1.80 -4.07 4.07 -4.07	σ (MPa)	σ (MPa)	σ (MPa)
5.99 6.29 5.81 6.06 4.87 5.03 3.91 3.99 3.06 3.06 3.27 3.26 3.24 3.21 2.68 2.59 2.01 1.86 4.07 2.00 1.80 4.07 2.00 1.80 4.07 1.23 0.96 0.90 0.60 0.59 0.26 0.38 0.03 0.18 -0.18 0.11 -0.26	0.00	0.00	-4.07
5.81 6.06 4.87 5.03 3.91 3.99 3.06 3.06 3.27 3.26 3.24 3.21 2.68 2.59 2.01 1.86 1.58 1.39 4.07 2.00 1.80 1.67 1.43 4.07 4.07 0.90 0.60 0.59 0.26 0.38 0.03 0.18 -0.18 0.11 -0.26	3.41	3.60	-4.07
4.87 5.03 3.91 3.99 3.06 3.06 3.27 3.26 3.24 3.21 2.68 2.59 2.01 1.86 1.58 1.39 4.07 2.00 1.80 4.07 1.67 1.43 4.07 4.07 0.90 0.60 0.59 0.26 0.38 0.03 0.18 -0.18 0.11 -0.26	5.99	6.29	-4.07
3.91 3.99 -4.07 3.06 3.06 3.27 3.26 3.24 3.21 -4.07 2.68 2.59 -4.07 1.58 1.39 -4.07 1.79 1.60 -4.07 2.00 1.80 -4.07 1.23 0.96 -4.07 1.23 0.96 -4.07 0.90 0.60 0.59 0.26 0.38 0.03 -4.07 0.18 -0.18 0.11 -0.26 -4.07	5.81	6.06	-4.07
3.06 3.06 3.06 3.27 3.26 -4.07 3.24 3.21 -4.07 2.68 2.59 -4.07 1.58 1.39 -4.07 1.79 1.60 -4.07 1.67 1.43 -4.07 1.23 0.96 -4.07 0.90 0.60 0.59 0.26 0.38 0.03 0.18 -0.18 -0.18 0.11 -0.26 -4.07 -4.07 -4.07 0.11 -0.26 -4.07	4.87	5.03	-4.07
3.27 3.26 -4.07 3.24 3.21 -4.07 2.68 2.59 -4.07 1.58 1.39 -4.07 1.79 1.60 -4.07 1.67 1.43 -4.07 1.23 0.96 -4.07 0.59 0.26 0.38 0.03 0.18 -0.18 -0.26 0.18 -0.26 0.18 -0.26 0.18 -0.26 0.18 -0.26 -4.07	3.91	3.99	-4.07
3.24 3.21 -4.07 2.68 2.59 -4.07 2.01 1.86 -4.07 1.58 1.39 -4.07 1.79 1.60 -4.07 2.00 1.80 -4.07 1.67 1.43 -4.07 1.23 0.96 -4.07 0.90 0.60 -4.07 0.59 0.26 -4.07 0.38 0.03 -4.07 0.18 -0.18 0.11 -0.26 -4.07	3.06	3.06	-4.07
2.68 2.59 -4.07 2.01 1.86 -4.07 1.58 1.39 -4.07 1.79 1.60 -4.07 2.00 1.80 -4.07 1.67 1.43 -4.07 1.23 0.96 -4.07 0.90 0.60 -4.07 0.59 0.26 -4.07 0.38 0.03 -4.07 0.18 -0.18 -4.07 -4.07 -4.07 -4.07	3.27	3.26	-4.07
2.01 1.86 -4.07 1.58 1.39 -4.07 1.79 1.60 -4.07 2.00 1.80 -4.07 1.67 1.43 -4.07 1.23 0.96 -4.07 0.90 0.60 -4.07 0.59 0.26 -4.07 0.38 0.03 -4.07 0.18 -0.18 -4.07 0.11 -0.26	3.24	3.21	-4.07
1.58 1.39 -4.07 1.79 1.60 -4.07 2.00 1.80 -4.07 1.67 1.43 -4.07 1.23 0.96 -4.07 0.90 0.60 -4.07 0.59 0.26 -4.07 0.38 0.03 -4.07 0.18 -0.18 -4.07 0.11 -0.26 -4.07	2.68	2.59	-4.07
1.79 1.60 -4.07 2.00 1.80 -4.07 1.67 1.43 -4.07 1.23 0.96 -4.07 0.90 0.60 -4.07 0.59 0.26 -4.07 0.38 0.03 -4.07 0.18 -0.18 -4.07 0.11 -0.26	2.01	1.86	-4.07
2.00 1.80 -4.07 1.67 1.43 -4.07 1.23 0.96 -4.07 0.90 0.60 -4.07 0.59 0.26 -4.07 0.38 0.03 -4.07 0.18 -0.18 -4.07 0.11 -0.26 -4.07	1.58	1.39	-4.07
1.67 1.43 -4.07 1.23 0.96 -4.07 0.90 0.60 -4.07 0.59 0.26 -4.07 0.38 0.03 -4.07 0.18 -0.18 -4.07 0.11 -0.26 -4.07	1.79	1.60	-4.07
1,23 0.96 -4.07 0.90 0.60 -4.07 0.59 0.26 -4.07 0.38 0.03 -4.07 0.18 -0.18 -4.07 0.11 -0.26 -4.07	2.00	1.80	-4.07
0.90 0.60 -4.07 0.59 0.26 -4.07 0.38 0.03 -4.07 0.18 -0.18 -4.07 0.11 -0.26 -4.07	1.67	1.43	-4.07
0.59 0.26 -4.07 0.38 0.03 -4.07 0.18 -0.18 -4.07 0.11 -0.26 -4.07	1.23	0.96	-4.07
0.38 0.03 -4.07 0.18 -0.18 -4.07 0.11 -0.26 -4.07	0.90	0.60	-4.07
0.18 -0.18 -4.07 0.11 -0.26 -4.07	0.59	0.26	-4.07
0.11 -0.26 -4.07	0.38	0.03	-4.07
	0.18	-0.18	-4.07
0.04 -0.34 -4.07	0.11	-0.26	-4.07
	0.04	-0.34	-4.07

RESISTENCIA

fctm,fl

ENV ELS FREC. FIBRA 4 FIBRA 5

PROYECTO:

FECHA: HOJA: DE

COMBINACIÓN ELS CUASIPERMANENTE

	Comb. I	ELS C1	Comb. E	LS C2	Comb. I	ELS C3	Comb. E	LS C4	ENV ELS (CUASIP.
	FIBRA 4	FIBRA 5	FIBRA 4	FIBRA 5						
X (m)	σ (MPa)	σ (MPa)								
-0.400	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
0.000	4.19	4.43	4.20	4.44	3.45	3.65	3.46	3.66	3.45	3.65
0.413	7.58	7.97	7.59	7.98	6.18	6.49	6.19	6.50	6.18	6.49
0.825	7.67	8.02	7.68	8.02	6.18	6.46	6.19	6.47	6.18	6.46
1.238	6.82	7.06	6.84	7.09	5.41	5.61	5.43	5.64	5.41	5.61
1.650	5.98	6.13	6.01	6.17	4.65	4.78	4.69	4.82	4.65	4.78
2.063	5.24	5.31	5.27	5.34	3.98	4.05	4.01	4.08	3.98	4.05
2,475	5.87	5.98	5.90	6.01	4.39	4.48	4.43	4.51	4.39	4.48
2.888	6.12	6.21	6.16	6.25	4.55	4.61	4.59	4.66	4.55	4.6
3,300	5.75	5.79	5.80	5.84	4.19	4.22	4.24	4.27	4.19	4.22
3.713	5.19	5.15	5.24	5.22	3.68	3.66	3.74	3.72	3.68	3.66
4.125	4.98	4.93	5.05	5.00	3.44	3.39	3.50	3.46	3.44	3.39
4.538	5.46	5.42	5.53	5.49	3.79	3.75	3.86	3.82	3.79	3.75
4,950	5.96	5.92	6.03	6.00	4.16	4.13	4.24	4.21	4.16	4.13
5,363	5.74	5.67	5.82	5.76	3.95	3.89	4.03	3.98	3.95	3.89
5,775	5.39	5.28	5.47	5.37	3.64	3.55	3.72	3.64	3,64	3.55
6.188	5.13	4.99	5.22	5.09	3.40	3.29	3.49	3.38	3.40	3.29
6,600	4.88	4.72	4.97	4.82	3.18	3.05	3.27	3.15	3.18	3.05
7.013	4.72	4.53	4.81	4.64	3.03	2.88	3.13	2.99	3.03	2.88
7.425	4.57	4.37	4.67	4.48	2.90	2.74	3.00	2.85	2.90	2.74
7,838	4.52	4.31	4.61	4.42	2.85	2.69	2.95	2.79	2.85	2.69
8,250	4.47	4.26	4.56	4.36	2.81	2.64	2.90	2.74	2.81	2.64

σ (MPa)											FIBRA 4	— FIBE	₹A 5
8.0	$\neg \Gamma$	\top			Г	Τ	Т	\top				\top	
7.0	\dashv	+		<u> </u>	<u> </u>	<u> </u>		4				\bot	
			λ										
6.0	$\neg \uparrow \gamma$	$/\!\!\!\!/$						\top				\top	\neg
5.0	$+\!\!\!\!/$	+			 	 		+	-+			+	-
4.0	7	\top										\top	
3.0	$-\!\!\!\!/$	+		 	 	+	+	+	\rightarrow	\		_	-
2.0		\perp											
2.0	\mathcal{T}	T											
1.0	+	+		 	 	1	+	+	-+		 	+	\dashv
0.0		\perp						\perp					
-0.5		0.50	1	.50 2.	.50 3	3.50	4.50	5.50	6.50	7	50	8.50	9.5

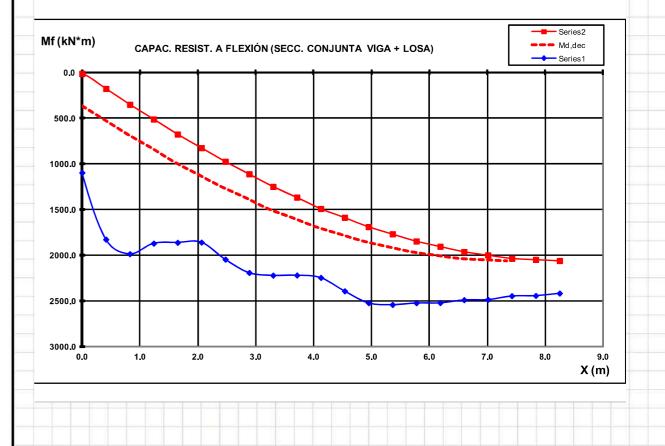
FECHA: HOJA: DE

CÁLCULO DE SECCIONES DE HORMIGÓN PRETENSADO: COMPROBACIÓN ELU FLEXIÓN (EHE-08)

CARACTERÍSTICAS DE LOS MATERIALES

ORM	IGÓN LOSA	ACERO AC	CTIVO	ACEF	RO PASIVO
: ck	25 MPa	f _{pyk} 163	6.8 MPa	f _{yk}	500 MPa
Ϋ́c	1.5	γ _s 1.	.15	Ϋ́s	1.15
cc	0.85	f _{pyd} 1423	3.3 MPa	f _{vd}	434.8 MPa
cd	14.2 MPa		000 MPa	Es	200000 MPa
		ε _{pyd} 0.007	749	€vd	0.00217
	50 MPa	7 49	0/_	-,-	2 17 %.

	CARACTERÍSTICAS DE LA SECCIÓN DE CÁLCULO													
X (m)	b _{LOSA} (m)	h _{LOSA} (m)	h _{PREL} (m)	b _{ALMA} (m)	h _{VIGA} (m)	A _p (cm ²)	F _{pd} (kN)	Zp (m)	A _s (cm ²)	F _{sd} (kN)	Zs (m)	F _{totd} (kN)	∆Ftd (kN)	CDG _{arm} (m)
-0.400	1.763	0.250	0.060	0.120	0.850	0.00	0.0	0.000	0.00	0.0	0.800	0.0	0.0	0.800
0.000	1.763	0.250	0.060	0.120	0.850	6.16	876.4	0.630	0.00	0.0	0.800	876.4	405.0	0.630
0.413	1.763	0.250	0.060	0.120	0.850	12.51	1781.0	0.630	0.00	0.0	0.800	1781.1	401.0	0.630
0.825	1.763	0.250	0.060	0.120	0.850	14.00	1992.6	0.630	0.00	0.0	0.800	1992.7	390.8	0.630
1.238	1.763	0.250	0.060	0.120	0.850	14.00	1992.6	0.630	0.00	0.0	0.800	1992.7	244.1	0.630
1.650	1.763	0.250	0.060	0.120	0.850	14.00	1992.6	0.630	0.00	0.0	0.800	1992.7	232.7	0.630
2.063	1.763	0.250	0.060	0.120	0.850	14.00	1992.6	0.630	0.00	0.0	0.800	1992.7	230.0	0.630
2,475	1.763	0.250	0.060	0.120	0.850	15.16	2157.1	0.658	0.00	0.0	0.800	2157.2	216.9	0.658
2.888	1.763	0.250	0.060	0.120	0.850	16.43	2338.0	0.658	0.00	0.0	0.800	2338.1	216.5	0.658
3.300	1.763	0.250	0.060	0.120	0.850	16.80	2391.2	0.658	0.00	0.0	0.800	2391.2	199.5	0.658
3.713	1.763	0.250	0.060	0.120	0.850	16.80	2391.2	0.658	0.00	0.0	0.800	2391.2	197.4	0.658
4.125	1.763	0.250	0.060	0.120	0.850	16.88	2402.1	0.671	0.00	0.0	0.800	2402.2	177.6	0.671
4.538	1.763	0.250	0.060	0.120	0.850	18.15	2583.0	0.671	0.00	0.0	0.800	2583.1	177.3	0.671
4.950	1.763	0.250	0.060	0.120	0.850	19.42	2764.0	0.671	0.00	0.0	0.800	2764.0	156.3	0.671
5.363	1.763	0.250	0.060	0.120	0.850	19.60	2789.7	0.671	0.00	0.0	0.800	2789.7	154.5	0.671
5.775	1.763	0.250	0.060	0.120	0.850	19.60	2789.7	0.671	0.00	0.0	0.800	2789.7	131.9	0.671
6.188	1.763	0.250	0.060	0.120	0.850	19.60	2789.7	0.671	0.00	0.0	0.800	2789.7	129.9	0.671
6.600	1.763	0.250	0.060	0.120	0.850	19.60	2789.7	0.671	0.00	0.0	0.800	2789.7	89.8	0.671
7.013	1.763	0.250	0.060	0.120	0.850	19.60	2789.7	0.671	0.00	0.0	0.800	2789.7	85.7	0.671
7.425	1.763	0.250	0.060	0.120	0.850	19.60	2789.7	0.671	0.00	0.0	0.800	2789.7	36.5	0.671
7.838	1.763	0.250	0.060	0.120	0.850	19.60	2789.7	0.671	0.00	0.0	0.800	2789.7	32.4	0.671
8.250	1.763	0.250	0.060	0.120	0.850	19.60	2789.7	0.671	0.00	0.0	0.800	2789.7	0.0	0.671



PROYECTO:

-		ESFUERZO	S DE CÁLCUL	.0
_	X (m)	Xdec (m)	M _d (kN)	N _d (kN)
	-0.400	-1.450	0.0	0.0
	0.000	-0.880	11.5	0.0
	0.413	-0.467	175.5	0.0
	0.825	-0.055	348.3	0.0
	1.238	0.358	509.6	0.0
	1.650	0.770	674.3	0.0
	2.063	1.183	822.8	0.0
	2.475	1.567	973.4	0.0
	2.888	1.979	1109.7	0.0
	3.300	2.392	1247.4	0.0
	3.713	2.804	1365.5	0.0
	4.125	3.204	1489.7	0.0
	4.538	3.616	1586.3	0.0
	4.950	4.029	1687.5	0.0
	5.363	4.441	1766.5	0.0
	5.775	4.854	1844.8	0.0
	6.188	5.266	1903.5	0.0
	6.600	5.679	1960.2	0.0
	7.013	6.091	1997.3	0.0
	7.425	6.504	2033.8	0.0
	7.838	6.916	2046.6	0.0
	8.250	7.329	2059.4	0.0

F _{totd} (kN)	X _{FN} (m)	Z (m)	Mu (kN*m)	Md (kN*m)	~	CHECK
0.0	0.000	1.050	0.0	0.0	#¡DIV/0!	OK!
1281.4	0.064	0.854	1094.8	11,5	95,41	OK!
2182.0	0.109	0.836		175.5	10.40	OK!
2383.5	0.119	0.832		348.3	5.70	OK!
2236.8	0.112	0.835	1868.2	509.6	3.67	OK!
2225.3	0.111	0.835	1859.1	674.3	2.76	OK!
2222.6	0.111	0.835	1857.0	822.8	2.26	OK!
2374.1	0.119	0.861	2043.6	973.4	2.10	OK!
2554.6	0.128	0.857	2189.8	1109.7	1.97	OK!
2590.7	0.130	0.856	2218.8	1247.4	1.78	OK!
2588.6	0.130	0.856	2217.2	1365.5	1.62	OK!
2579.8	0.129	0.870	2243.8	1489.7	1.51	OK!
2760.3	0.138	0.866	2390.9	1586.3	1.51	OK!
2920.3	0.146	0.863	2520.1	1687.5	1.49	OK!
2944.2	0.147	0.862	2539.3	1766.5	1.44	OK!
2921.6	0.146	0.863	2521.1	1844.8	1.37	OK!
2919.6	0.146	0.863	2519.5	1903.5	1.32	OK!
2879.5	0.144	0.864	2487.2	1960.2	1.27	OK!
2875.4	0.144	0.864	2484.0	1997.3	1,24	OK!
2826.2	0.141	0.865	2444.2	2033.8	1.20	OK!
2822.1	0.141	0.865	2440.9	2046.6	1.19	OK!
2789.7	0.140	0.866	2414.7	2059.4	1.17	OK!

FECHA: HOJA: DE

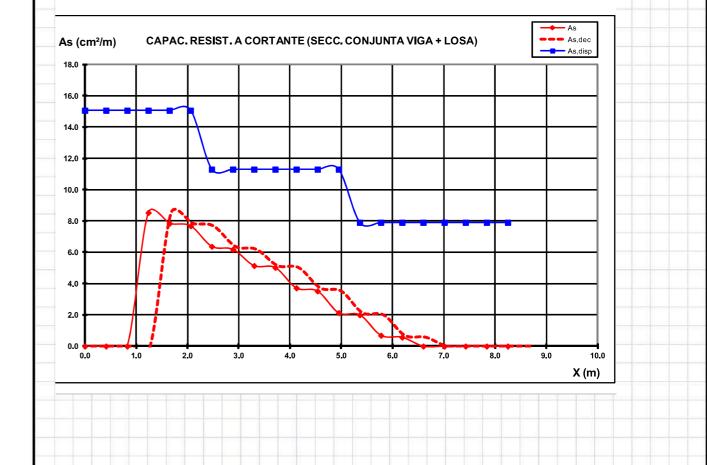
CÁLCULO DE SECCIONES DE HORMIGÓN ARMADO / PRETENSADO: COMPROBACIÓN ELU CORTANTE (EHE-08)

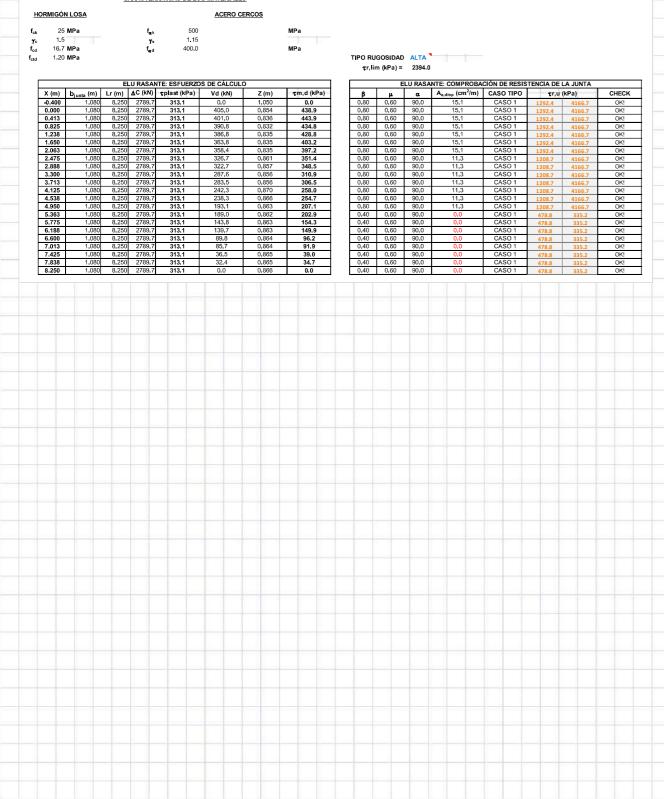
CARACTERÍSTICAS DE LOS MATERIALES

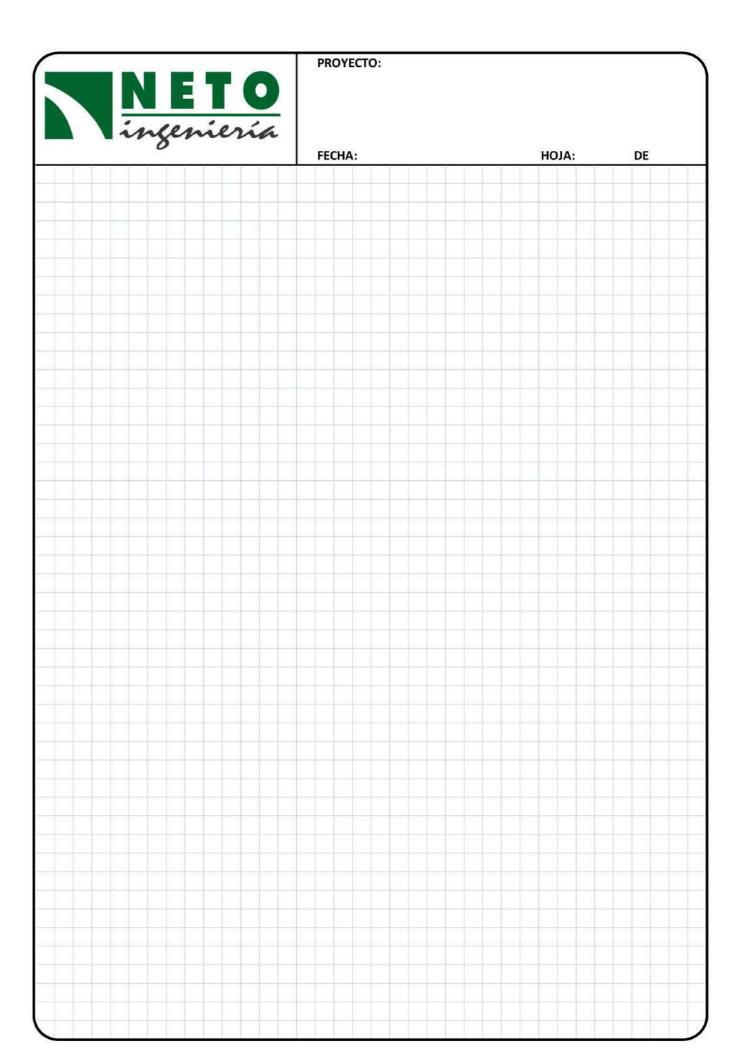
HOR	MIGON VIGA	ACE	RO CERCOS	
f _{ck}	50 MPa	$f_{\alpha k}$	500 MPa	
γc	1.5	γs	1.15	
f _{cd}	33.3 MPa	$f_{\alpha d}$	400.0 MPa	

	CARACTERÍSTICAS DE LA SECCIÓN DE CÁLCULO								
X (m)	b 0 (m)	d (m)	z (m)	A _{s1} (cm ²)	A _{secc} (m ²)	α°	θ°	CHECK	
-0.400	0.120	1.050	1.050	0.0	0.6288	90.0	45.0	OK!	
0.000	0.120	0.880	0.854	6.2	0.6288	90.0	45.0	OK!	
0.413	0.120	0.880	0.836	12.5	0.6288	90.0	45.0	OK!	
0.825	0.120	0.880	0.832	14.0	0.6288	90.0	45.0	OK!	
1.238	0.120	0.880	0.835	14.0	0.6288	90.0	45.0	OK!	
1.650	0.120	0.880	0.835	14.0	0.6288	90.0	45.0	OK!	
2.063	0.120	0.880	0.835	14.0	0.6288	90.0	45.0	OK!	
2.475	0.120	0.908	0.861	15.2	0.6288	90.0	45.0	OK!	
2.888	0.120	0.908	0.857	16.4	0.6288	90.0	45.0	OK!	
3.300	0.120	0.908	0.856	16.8	0.6288	90.0	45.0	OK!	
3.713	0.120	0.908	0.856	16.8	0.6288	90.0	45.0	OK!	
4.125	0.120	0.921	0.870	16.9	0.6288	90.0	45.0	OK!	
4.538	0.120	0.921	0.866	18.1	0.6288	90.0	45.0	OK!	
4.950	0.120	0.921	0.863	19.4	0.6288	90.0	45.0	OK!	
5.363	0.120	0.921	0.862	19.6	0.6288	90.0	45.0	OK!	
5.775	0.120	0.921	0.863	19.6	0.6288	90.0	45.0	OK!	
6.188	0.120	0.921	0.863	19.6	0.6288	90.0	45.0	OK!	
6.600	0.120	0.921	0.864	19.6	0.6288	90.0	45.0	OK!	
7.013	0.120	0.921	0.864	19.6	0.6288	90.0	45.0	OK!	
7.425	0.120	0.921	0.865	19.6	0.6288	90.0	45.0	OK!	
7.838	0.120	0.921	0.865	19.6	0.6288	90.0	45.0	OK!	
8.250	0.120	0.921	0.866	19.6	0.6288	90.0	45.0	OK!	

ESEII	ERZOS DE CA	VI CIII O
V _{rd} (kN)	N _d (kN)	SIGNO
0.0	0.0	COMP.
405.0	602.6	COMP.
401.0	1224.6	COMP.
390.8	1370.2	COMP.
386.8	1370.2	COMP.
363.8	1370.2	COMP.
358.4	1370.2	COMP.
326.7	1483.3	COMP.
322.7	1607.7	COMP.
287.6	1644.2	COMP.
283.5	1644.2	COMP.
242.3	1651.7	COMP.
238.3	1776.1	COMP.
193.1	1900.5	COMP.
189.0	1918.2	COMP.
143.8	1918.2	COMP.
139.7	1918.2	COMP.
89.8	1918.2	COMP.
85.7	1918.2	COMP.
36.5	1918.2	COMP.
32.4	1918.2	COMP.
0.0	1918.2	COMP.




PROYECTO:


X (m)	Xdec (m)	A _{a,nec} (cm ² /m)		A _{a,disp} (cm ² /m)	A _{α, min} (cm ² /m)	f _{ct,m} (MPa)	V_{rd} / V_{u1}	s _{t,max} (m)
-0.400	0.125	0.0	15.1	f12 0.15	0.0	4.1	0.00	0.300
0.000	0.440	0.0	15.1		0.0	4.1	0.37	0.300
0.413	0.853	0.0	15.1		0.0	4.1	0.36	0.300
0.825	1.265	0.0	15.1		0.0	4.1	0.35	0.300
1.238	1.678	8.5	15.1		1.6	4.1	0.34	0.300
1.650	2.090	7.8	15.1		1.6	4.1	0.32	0.300
2.063	2.503	7.7	15.1		1.6	4.1	0.32	0.300
2.475	2.929	6.4	11.3	f12 0.20	1.6	4.1	0.28	0.300
2.888	3.342	6.2	11.3		1.6	4.1	0.27	0.300
3.300	3.754	5.1	11.3		1.6	4.1	0.24	0.300
3.713	4.167	5.0	11.3		1.6	4.1	0.24	0.300
4.125	4.586	3.7	11.3		1.6	4.1	0.20	0.300
4.538	4.998	3.5	11.3		1.6	4.1	0.20	0.300
4.950	5.411	2.1	11.3		1.6	4.1	0.16	0.300
5.363	5.823	2.0	7.9	f10 0.20	1.6	4.1	0.16	0.300
5.775	6.236	0.7	7.9		1.6	4.1	0.12	0.300
6.188	6.648	0.6	7.9		1.6	4.1	0.12	0.300
6.600	7.061	0.0	7.9		0.0	4.1	0.07	0.300
7.013	7.473	0.0	7.9		0.0	4.1	0.07	0.300
7.425	7.886	0.0	7.9		0.0	4.1	0.03	0.300
7.838	8.298	0.0	7.9		0.0	4.1	0.03	0.300
8.250	8.711	0.0	7.9		0.0	4.1	0.00	0.300

N	=	0
in	zem	ería

		CARACTERÍSTI	CAS DE LOS MATERIALE	<u> </u>	
HOF	MIGÓN LOSA		ACERO (CERCOS	
f _{ck}	25 MPa	f _{osk}	500	MPa	
·c	1.5	Ϋ́s	1.15		
d	16.7 MPa	f _{ecd}	400.0	MPa	
d	1.20 MPa	-			TIPO RUGOSIDAD ALTA
					τ r, lim (kPa) = 2394.0

Fuerza Pretensado NSTANTÁNEA (kN): 3522,9 18,0 % TENSIÓN REMANENTE (MPa)

 Pérdidas DIF hasta HORM LOSA (kN):
 265.0

 Pérdidas DIF hasta t=0 (kN):
 356.7

 Pérdidas DIF hasta t=00 (kN):
 666.1
 Pérdidas TOTALES (INS+DIF) (kN): 1439.8 33.5 % PROYECTO:

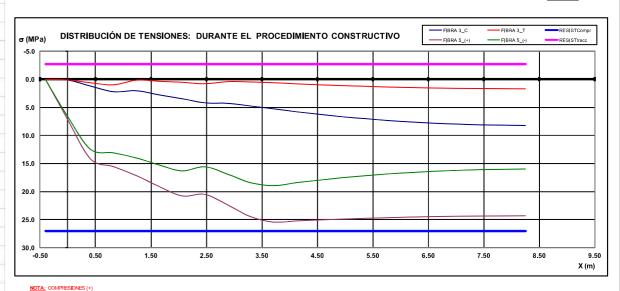
FECHA: HOJA: DE

3 2) Viga 2 v 6 - INTERIORES

3.2) <u>Viga 2 y 6 -</u>	INTERIOR	FÇ.							
3.2) <u>viga 2 y 0 -</u>	INTLINION	<u>LJ</u> .							
						-			
						1			
DATOS DE LOS MATERIALES: VIGA PRE	FABRICADA					1 1			
* HORMIGÓN:		* ARMADURA ACTIVA:		* ARMADURA PASIVA:					
Resist, Característica (28 d):	ck 50.00 MPa				Es 200000 MPa				
	c 1.50 ELU 1.30 ACC	(Y-1860 S7)	es de Pretensado: (nom 15.2 mm BARRAS CORRUGADAS: Es 200000 MPa ST) Ap 1.40 cm² (B-500 SISD) Ep 150000 MPa Ultima Pretensado: 15,max 1980 MPa Limite Elástico Característico: 1y/k 500 MPa llatico Característico: 1y/k 1537 MPa 1.15 ELU 19 1.00 ACC 1Transferencia: bpt 0.009 m						
Módulo Deformación Secante (28 d):	Ecm 32902 MPa	Resist Última Pretensado:	rdondes de Pretensado: gnom 15.2 mm BARRAS CORRUGADAS: Es 200000 MPa 1800 ST) Ap 1.40 cm² (B-500 SISD) Ep 1000000 MPa 1.40 cm² (B-500 SISD) ST) SISL Útima Pretensado: fy.max 1980 MPa Limite Elastico Característico: fyls 500 MPa 1.15 ELU 1.15 ELU 1.15 ELU 1.10 ACC						
			tiondes de Pretensado: (nom 15.2 mm BARRAS CORRUSADAS: Es 200000 MPa (800 ST) Ap 1.40 cm² (B-500 SISD) Ep (500000 MPa (800 ST) Ap 1.40 cm² (B-500 SISD) Ep (500000 MPa (800 SISD) Ep (500 MPa (800 SISD) Ep (500 MPa (800 SISD) Ep (500 SISD) Ep (500 MPa (800 SISD) Ep (500 SISD) Ep						
Resist, Media Tracción (28 d):	fct,m 4.07 MPa		1890 S7						
	fctm,fl 4.07 MPa hviga 0.85 m	Longitud Transferencia: Tensión Adherencia (28 d)	Ep 19000 MPa Limit Ülima Pretensado 10, max 1980 MPa tel Elistico Característico: 5/4 500 MPa tel Elistico Característico: 5/4 500 MPa 1.15 ELU 19 10 0.0C						
EDAD HORMIGÓN EN	TESADO: 3 d		DEF, ARMADURAS ACTIVAS		DEF. ARMADURAS PASIVAS				
Módulo Deformación Secante (TESADO):	Ecm 29086 MPa		Noor Zanasana (m) Lent (m)	Ltransf (m)	As (cm²) Z (m)				
Módulo Deformación Tangente (TESADO):	Ec 34176 MPa	Ell A A	Ncor Z _{VENDAP} (m) Lert (m) Liransi (m) FILA 1 4 0,000 0,00 0,91 FILA 1 6,28 0,800 FILA 2 4 0,000 1,00 0,91 FILA 2 FILA 2 4 0,000 1,00 0,91 FILA 3 FILA 4 0,700 0,00 0,91 FILA 5 FILA 4 0,700 0,00 0,91 FILA 6 FILA 6 2 0,850 0,40 0,91 FILA 6 FILA 7 FILA 6 0,000 FILA 7 FILA 0 0,000 FILA 7 FILA 10 0,000 FILA 10 FILA 10 0,000 FILA 10 FILA 11 0,000 FILA 11						
Resist, Media Tracción (TESADO):	fct,m 2.70 MPa	FILA 2	FILA 1 4 0,800 0.00 0.91 FILA 1 6,28 0,800 FILA 2 4 0,800 0.50 0.51 FILA 2 4 0,800 0.51 FILA 3 4 0,750 0,300 0.51 FILA 3 FILA 4 0,750 0,300 0.51 FILA 4 4 0,750 0,300 0.51 FILA 5 FILA 5 4 0,700 0,300 0.51 FILA 5 F						
Resist. Media Flexotracción (TESADO):	fctm,f) 2.70 MPa nviga 0.85 m		4 0,750 0,00 4 0,750 3,00	0.91 FILA 3 3.91 FILA 4					
	0,20	FILA 5	4 0.700 0.00	0.91 FILA 5					
Coeficientes:	χ 1.00	FILA 7	1 0,000 0,00	0.00 FILA 7					
	3cc(t) 0.66	FILA 9		0.00 FILA 9					
		FILA 10 FILA 11		0.00 FILA 10 0.00 FILA 11		+	 	+	
		FILA 12		0.00 FILA 12					
		FILA 14		0.00 FILA 14					
		FILA 15		0.00 FJLA 15	5				
		SUMA Ap,tot (cm²)	22 30.80	As,tot (cm²)) 6.28				
		np	5.77	ns	6.08				
		CDGsup (m) CDGinf (m)	-0.155	CDGsup (m) CDGinf (m)	-0.050				
		hviga	0.85	hviga	0.85				
	perhick	ÀU CADACTERÍCTICAS MEGÁNICAS.	ercelán vica porrapoleana	Alexana					
	DEFINICIO	ÓN CARACTERÍSTICAS MECÁNICAS: S	SECCION VIGA PREFABRICADA						
* PROPIEDADES BRUTAS:		* PROPIEDADES NETAS:		* PROPIEDADES HOMOGEN	EIZADAS:				
ÁREA (m²)	0.2976	ÁREA (m²)	0.2939	ÁREA (m²)	0.3155				
CDG _{SUP} (m) CDG _{INF} (m)	0.416 -0.434	CDG _{SUP} (m) CDG _{INF} (m)	0.412 -0.438	CDG _{SUP} (m) CDG _{INF} (m)	0.433 -0.417				
Ivv (m*)	0.030219	h _{'Y} (m ⁴)	0.029881	l₁√ (m⁴)	0.031751				
MÓDULOS RESISTENTES:		MÓDULOS RESISTENTES:		MÓDULOS RESISTENTES:					
d ₁ (m) =	0.000 LOSA_SUP	d ₁ (m) =	0.000 LOSA_SUP	d₁ (m) =	0.000 LOSA_SUP				
W ₁ (cm ³) =	0.000 0.000 LOSA_INF	W ₁ (cm ³) =	0.000 0.000 LOSA_INF	W ₁ (cm ³) =	0.000 0.000 LOSA_INF				
$d2 (m) = W_2 (cm^3) =$	0.000 EOSA_INF	$d2 (m) = W_2 (cm^3) =$	0.000 LOSA_NF	$d2 (m) = W_2 (cm^3) =$	0.000 LOSA_JNF				
d ₃ (m) =	0.416 VIGA_SUP	d ₃ (m) =	0.412 VIGA_SUP	d ₃ (m) =		-	 	1-1-1	
W ₃ (cm ³) = d ₄ (m) =		W ₃ (cm ³) = d ₄ (m) =	0.072536 0.388 PRET_INF	W ₃ (cm ³) = d ₄ (m) =	0.073390 -0.367 PRET_INF				
W ₄ (cm ³) =	-0.078636	$W_4 (cm^3) =$	-0.077004	$W_4 (cm^3) =$	-0.086427				
d ₅ (m) = W ₅ (cm ³) =	-0.434 VIGA_INF	$d_S(m) = W_S(cm^3) =$	-0.438 VIGA_INF	$d_S(m) = W_S(cm^3) =$	-0.417 VIGA_INF				
ws (cm / -					- 4.070073				
		DEFINICIÓN CARACTERÍSTICAS MEC	ÁNICAS: SECCIÓN VIGA + LOSA	<u>l</u>					
TIPO VIGA A ANALIZAR:	INTERIOR								
CANTO LOSA(m)	0.25								
PROPIEDADES BRUTAS:		* PROPIEDADES NETAS:		* PROPIEDADES HOMOGENI	EJZADAS:				
ÁREA (m²)	0.7173	ÁREA (m²)	0.7136	ÁREA (m²)	0.7352				
CDG _{SUP} (m)	0.341	CDG _{SUP} (m)	0.338	CDG _{SUP} (m)	0.356				
CDG _{INF} (m)	-0.759	CDG _{INF} (m)	-0.762	CDG _{INF} (m)	-0.744				
I _{YY} (m ⁴)	0.085734	l _{YY} (m⁴)	0.084286	I _{ry} (m ⁴)	0.092538				
MÓDULOS RESISTENTES:		MÓDULOS RESISTENTES:		MÓDULOS RESISTENTES:					
			0.0001.001.7:-						
d ₁ (m) = W ₁ (cm ³) =	0.341 LOSA_SUP 0.251329	$d_1 (m) = W_1 (cm^3) =$	0.338 LOSA_SUP 0.249448	$d_1(m) = W_1(cm^2) =$					
d2 (m) =	0.091 LOSA_INF	d2 (m) =		d2 (m) =	0.106 LOSA_INF				
W ₂ (cm ³) = d ₃ (m) =		W ₂ (cm ³) = d ₃ (m) =	0.958997 0.088 VIGA_SUP	$W_2 \text{ (cm}^3) = d_3 \text{ (m)} =$	0.870668 0.106 VIGA_SUP				
W ₃ (cm ³) =	0.940872	W ₃ (cm ³) =	0.958997	W ₃ (cm ³) =	0.870668				
$d_4 (m) = W_4 (cm^3) =$	-0.709 PRET_INF	d ₄ (m) = W ₄ (cm ³) =	-0.712 PRET_INF	$d_4 (m) = W_4 (cm^3) =$	-0.694 PRET_NF				
d ₆ (m) =	-0.759 VIGA_INF		-0.762 VIGA_INF		-0.744 VIGA_INF				
W ₅ (cm ³) =	-0.112975	W ₅ (cm ³) =	-0,110596	$W_5 (cm^3) =$	-0.124427				
		CALCULO DE PERDIDAS	DE PRETENSADO						
	kN PÉRDIDAS	TENSIÓN INICIAL (MPa)							
Fuerza Pretensado NICIAL (kN):	4296.6 0.0 %	1395.0	CHECK: 0.75 fp, max < 0.80!	0.85 fypk < 0.90!					
Penetración de Cuña (5mm):	24.4 0.6 %		- 000.	- 450.					
NOTA: Longitud de BANCADA = 120m									
Relajación Pretensado HASTA TRANSF; pEQUIV (%):	156.9 3.7 % 3.7								
teq (h): NOTA: Curado al VAPOR 70°C 3días	50417								
TRANSF (h):	72								
ρTRANSF (%): ρ1000 (%):	1.4 2.0							4——	
Dilatación Térmica ARMADURAS:	237.5 5.5 %								
Κ: α (1/°C):	0.5 5.0E-05								
Tmáx (°C):	70.0								
Acortamiento Elástico:	354.9 8.3 %								
⊲cp (Mpa):	20.7								
Pérdidas INS hasta TRANSFERENCIA (kN):	773.7 18.0 %								

<u>CHECK:</u> 0.50 fp,max 0.57 fypk < 0.70! < 0.85!

4.950 5.363 5.775 6.188 6.600 7.013 PROYECTO:


FECHA: HOJA: DE

ENVOLVENTE TENSIONES 2.063 2.475 2.888 3.300 3.713 4.125 4.538

1.61 22.99 1.64 22.96

MÁX	MÍN	MÁX	MÍN	RESISTENCIA T	ESADO DE	LA VIGA
FIBRA 3	FIBRA 3	FIBRA 5	FIBRA 5	fctm,fl,tesado	fck,tesa	lo (MPa)
σ (MPa)	σ(MPa)	σ (MPa)	σ (MPa)	σ (MPa)	σ cmax	MÍN.
0.00	0.00	0.00	0.00	-2.70	27.00	45.0
0.11	0.09	7.15	6.63	-2.70	27.00	45.0
1,19	0,58	14,16	12,46	-2.70	27,00	45.0
2,19	0.94	15,53	13,09	-2.70	27.00	45.0
2.02	0.13	17.12	13.99	-2.70	27.00	45.0
2.76	0.32	19.07	15.25	-2.70	27.00	45.0
3.44	0.50	20.74	16.30	-2.70	27.00	45.0
4.18	0.76	20.47	15.57	-2.70	27.00	45.0
4.27	0.38	22.37	16.90	-2.70	27.00	45.0
4.75	0.45	24.45	18.41	-2.70	27.00	45.0
5.24	0.58	25.40	18.93	-2.70	27.00	45.0
5.78	0.77	25.20	18.40	-2.70	27.00	45.0
6,23	0,94	25.03	17.96	-2.70	27.00	45.0
6,66	1,09	24,87	17.52	-2.70	27.00	45.0
7.01	1,21	24,74	17.18	-2.70	27.00	45.0
7.35	1.33	24.61	16.84	-2.70	27.00	45.0
7,59	1.43	24,51	16,60	-2.70	27,00	45.0
7.83	1.51	24.42	16.37	-2.70	27.00	45.0
7.98	1.57	24.37	16.22	-2.70	27.00	45.0
8.11	1.61	24.32	16.08	-2.70	27.00	45.0
8.17	1.64	24.29	16.03	-2.70	27.00	45.0
8.22	1.65	24.28	15.97	-2.70	27.00	45.0

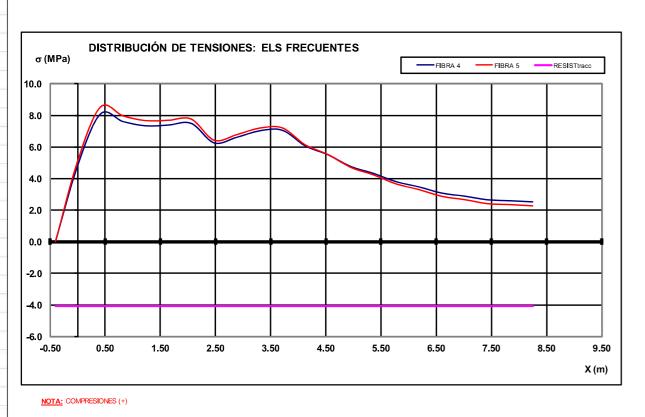
σ (MPa)	σ cmax	MÍN.
-2.70	27,00	45.0
-2.70	27.00	45.0
-2.70	27,00	45.0
-2.70	27,00	45.0
-2.70	27.00	45.0
-2.70	27.00	45.0
-2.70	27.00	45.0
-2.70	27.00	45.0
-2.70	27.00	45.0
-2.70	27.00	45.0
-2.70	27.00	45.0
-2.70	27.00	45.0
-2.70	27,00	45.0
-2.70	27,00	45.0
-2.70	27.00	45.0
-2.70	27.00	45.0
-2.70	27,00	45.0
-2.70	27.00	45.0
-2.70	27.00	45.0
-2.70	27.00	45.0
-2.70	27.00	45.0
-2.70	27.00	45.0
COMP. MÁX =	25.40	MPa

17.52 17.18 16.84 16.60 16.37 16.22

16.08 16.03 15.97

8.11 8.17

15.61



FECHA: HOJA: DE

COMBINACIÓN ELS FRECUENTE

	Comb.	ELS B1	Comb.	ELS B2	Comb.	ELS B3	Comb.	ELS B4
	FIBRA 4	FIBRA 5						
X (m)	σ (MPa)							
-0.400	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
0.000	6.01	6.37	6.04	6.40	4.81	5.08	4.84	5.12
0.413	10.42	10.98	11.15	11.76	8.10	8.52	8.83	9.30
0.825	10.13	10.61	11.59	12.17	7.63	7.97	9.08	9.54
1.238	10.14	10.62	12.15	12.78	7.35	7.67	9.37	9.83
1.650	10.49	10.94	13.15	13.80	7.41	7.69	10.07	10.55
2.063	10.83	11.27	13.96	14.62	7.51	7.76	10.64	11.12
2.475	9.51	9.82	13.19	13.76	6.27	6.42	9.94	10.36
2.888	10.19	10.53	14.23	14.86	6.63	6.79	10.67	11.12
3,300	10.93	11.28	15.47	16.15	7.04	7.19	11.58	12.07
3.713	11.10	11.43	15.85	16.52	7.07	7.21	11.82	12.30
4.125	10.06	10.29	15.28	15.89	6.09	6.14	11.31	11.74
4.538	9.44	9.61	14.81	15.36	5.52	5.52	10.89	11.28
4.950	8.64	8.73	14.34	14.84	4.77	4.71	10.47	10.82
5.363	8.17	8.21	13.97	14.43	4.34	4.24	10.14	10.45
5.775	7.60	7.58	13.61	14.02	3.81	3.66	9.81	10.10
6.188	7.24	7.19	13.34	13.73	3.48	3.30	9.58	9.84
6.600	6.82	6.73	13.09	13.45	3.08	2.87	9.35	9.60
7.013	6.61	6.50	12.93	13.28	2.89	2.66	9.21	9.44
7.425	6.37	6.23	12.78	13.11	2.66	2.41	9.08	9.29
7.838	6.30	6.15	12.72	13.04	2.60	2.34	9.02	9.23
8.250	6.22	6.06	12.67	12.98	2.52	2.26	8.97	9.18

ENV EL	S FREC.	RESISTENCIA
FIBRA 4	FIBRA 5	fctm,fl
σ (MPa)	σ (MPa)	σ (MPa)
0.00	0.00	-4.07
4.81	5.08	-4.07
8.10	8.52	-4.07
7.63	7.97	-4.07
7.35	7.67	-4.07
7.41	7.69	-4.07
7.51	7.76	-4.07
6.27	6.42	-4.07
6.63	6.79	-4.07
7.04	7.19	-4.07
7.07	7.21	-4.07
6.09	6.14	-4.07
5.52	5.52	-4.07
4.77	4.71	-4.07
4.34	4.24	-4.07
3.81	3.66	-4.07
3.48	3.30	-4.07
3.08	2.87	-4.07
2.89	2.66	-4.07
2.66	2.41	-4.07
2.60	2.34	-4.07
2.52	2.26	-4.07

PROYECTO:

FECHA: HOJA: DE

COMBINACIÓN ELS CUASIPERMANENTE

	Comb. I	ELS C1	Comb. E	ELS C2	Comb. E	LS C3	Comb. E	LS C4	ENV ELS	CUASIP.
	FIBRA 4	FIBRA 5								
X (m)	σ (MPa)									
-0.400	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.0
0.000	6.01	6.37	6.01	6.37	4.81	5.09	4.81	5.09	4.81	5.0
0.413	11.15	11.77	11.18	11.79	8.83	9.30	8.85	9.33	8.83	9.3
0.825	11.59	12.18	11.64	12.23	9.09	9.54	9.14	9.60	9.09	9.5
1.238	12.18	12.80	12.24	12.88	9.39	9.85	9.46	9.93	9.39	9.8
1.650	13.18	13.83	13.27	13.93	10.11	10.58	10.20	10.68	10.11	10.5
2,063	14.02	14.68	14.13	14.80	10.70	11.18	10,80	11.30	10.70	11.1
2,475	13.26	13.84	13.38	13.97	10.02	10.44	10.14	10.57	10.02	10.4
2,888	14.32	14.95	14.46	15.10	10.75	11.21	10.90	11.36	10.75	11.2
3.300	15.58	16.27	15.74	16.44	11.69	12.18	11.85	12.35	11.69	12.1
3.713	15.98	16.66	16.15	16.84	11.95	12.44	12.12	12.62	11.95	12.4
4.125	15.43	16.05	15.61	16.24	11.46	11.90	11.64	12.09	11.46	11.9
4.538	14.97	15,53	15.16	15.74	11.05	11.45	11,24	11.66	11.05	11.4
4,950	14.52	15.03	14.72	15.25	10.65	11.01	10.85	11,23	10.65	11.0
5,363	14.17	14.65	14.38	14.87	10.34	10.67	10,55	10.89	10.34	10.6
5,775	13.82	14.25	14.04	14.49	10.03	10.33	10,25	10.56	10.03	10.3
6.188	13.57	13.97	13.79	14.21	9.80	10.08	10.03	10.32	9.80	10.0
6.600	13.33	13.71	13.56	13.95	9.59	9.85	9.82	10.09	9.59	9.8
7.013	13.18	13.54	13.41	13.79	9.46	9.70	9.69	9.95	9.46	9.7
7.425	13.04	13.38	13.27	13.63	9.33	9.56	9.56	9.81	9.33	9.5
7,838	12.99	13.32	13.22	13.57	9.29	9.51	9.52	9.76	9.29	9.5
8,250	12.93	13.26	13.17	13.51	9.23	9.45	9.47	9.71	9.23	9.4

σ (MPa)										FIBRA 4	— FIBE	₹A 5
14.0	\top	Т	T	\neg				Ι	Ī	Ī	<u> </u>	$\overline{}$
12.0	+	4	_	\dashv						_		\dashv
10.0				V	//							
10.0		1									=	
8.0	+	#	-	\dashv			+	<u> </u>	+	+	-	\dashv
6.0												
0.0												
4.0	+	+		\dashv					+	+	+	\dashv
2.0	$\perp \!\!\! \perp$	\perp										
-												
0.0	50	0.5	1.50	2.5	-	50 4	1.50 5	5,50	6.50	7.50	8.50	9.5

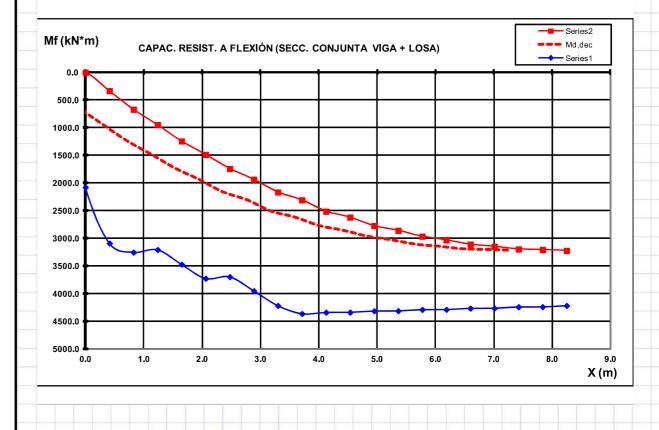
FECHA: HOJA: DE

CÁLCULO DE SECCIONES DE HORMIGÓN PRETENSADO: COMPROBACIÓN ELU FLEXIÓN (EHE-08)

CARACTERÍSTICAS DE LOS MATERIALES

HORM	IGÓN LOSA	ACERO ACTIVO	ACERO PASIVO
f _{ck}	25 MPa	f _{pyk} 1636.8 MPa	f _{yk} 500 MPa
γο	1.5	γ _s 1.15	γ _s 1.15
α	0.85	f _{pvd} 1423.3 MPa	f _{vd} 434.8 MPa
f _{cd}	14.2 MPa	Ep 190000 MPa	Es 200000 MPa
		ε pyd 0.00749	8 _{vd} 0.00217
	50 MPa	7.40 0/	2.17 %

					CARAC	TERÍSTICA	S DE LA S	ECCIÓN DE	E CÁLCULO)				
X (m)	b _{LOSA} (m)	h _{LOSA} (m)	h _{PREL} (m)	b _{ALMA} (m)	h _{VIGA} (m)	A _p (cm ²)	F _{pd} (kN)	Zp (m)	A _s (cm ²)	F _{sd} (kN)	Zs (m)	F _{totd} (kN)	∆Ftd (kN)	CDG _{arm} (m)
-0.400	2.325	0.250	0.060	0.120	0.850	0.00	0.0	0.000	6.28	273.0	0.800	273.0	0.0	0.80
0.000	2.325	0.250	0.060	0.120	0.850	8.62	1226.8	0.650	6.28	273.0	0.800	1499.9	826.9	0.67
0.413	2.325	0.250	0.060	0.120	0.850	17.52	2493.3	0.650	6.28	273.0	0.800	2766.4	822.8	0.66
0.825	2.325	0.250	0.060	0.120	0.850	19.60	2789.7	0.650	6.28	273.0	0.800	3062.7	737.1	0.66
1.238	2.325	0.250	0.060	0.120	0.850	20.45	2910.3	0.683	6.28	273.0	0.800	3183.3	424.3	0.69
1.650	2.325	0.250	0.060	0.120	0.850	22.99	3272.2	0.683	6.28	273.0	0.800	3545.2	386.2	0.69
2.063	2.325	0.250	0.060	0.120	0.850	25.20	3586.7	0.683	6.28	273.0	0.800	3859.8	386.5	0.69
2.475	2.325	0.250	0.060	0.120	0.850	25.20	3586.7	0.683	6.28	273.0	0.800	3859.8	350.1	0.69
2.888	2.325	0.250	0.060	0.120	0.850	26.97	3838.9	0.695	6.28	273.0	0.800	4112.0	350.0	0.70
3,300	2.325	0.250	0.060	0.120	0.850	29.51	4200.8	0.695	6.28	273.0	0.800	4473.8	323.1	0.70
3.713	2.325	0.250	0.060	0.120	0.850	30.80	4383.8	0.695	6.28	273.0	0.800	4656.8	322.4	0.70
4.125	2.325	0.250	0.060	0.120	0.850	30.80	4383.8	0.695	6.28	273.0	0.800	4656.8	292.4	0.70
4.538	2.325	0.250	0.060	0.120	0.850	30.80	4383.8	0.695	6.28	273.0	0.800	4656.8	290.4	0.70
4.950	2.325	0.250	0.060	0.120	0.850	30.80	4383.8	0.695	6.28	273.0	0.800	4656.8	260.7	0.70
5.363	2.325	0.250	0.060	0.120	0.850	30.80	4383.8	0.695	6.28	273.0	0.800	4656.8	258.7	0.70
5.775	2.325	0.250	0.060	0.120	0.850	30.80	4383.8	0.695	6.28	273.0	0.800	4656.8	230.0	0.70
6.188	2.325	0.250	0.060	0.120	0.850	30.80	4383.8	0.695	6.28	273.0	0.800	4656.8	227.9	0.70
6.600	2.325	0.250	0.060	0.120	0.850	30.80	4383.8	0.695	6.28	273.0	0.800	4656.8	199.9	0.70
7.013	2.325	0.250	0.060	0.120	0.850	30.80	4383.8	0.695	6.28	273.0	0.800	4656.8	197.9	0.70
7.425	2.325	0.250	0.060	0.120	0.850	30.80	4383.8	0.695	6.28	273.0	0.800	4656.8	170.6	0.70
7.838	2.325	0.250	0.060	0.120	0.850	30.80	4383.8	0.695	6.28	273.0	0.800	4656.8	168.5	0.70
8.250	2.325	0.250	0.060	0.120	0.850	30.80	4383.8	0.695	6.28	273.0	0.800	4656.8	140.9	0.7



PROYECTO:

	ESFUERZO	S DE CÁLCUL	.0
X (m)	Xdec (m)	M _d (kN)	N _d (kN)
-0.400	-1.450	0.0	0.0
0.000	-0.927	0.0	0.0
0.413	-0.502	334.1	0.0
0.825	-0.088	669.6	0.0
1.238	0.294	948.4	0.0
1.650	0.708	1244.0	0.0
2.063	1.121	1485.7	0.0
2.475	1.533	1739.5	0.0
2.888	1.935	1935.9	0.0
3.300	2.348	2164.7	0.0
3.713	2.761	2307.2	0.0
4.125	3.173	2512.4	0.0
4.538	3.586	2621.0	0.0
4.950	3.998	2774.3	0.0
5.363	4.411	2859.3	0.0
5.775	4.823	2966.0	0.0
6.188	5.236	3030.1	0.0
6.600	5.648	3110.4	0.0
7.013	6.061	3148.2	0.0
7.425	6.473	3195.5	0.0
7.838	6.886	3206.9	0.0
8.250	7.298	3221.8	0.0

F _{totd} (kN)	X _{FN} (m)	Z (m)	Mu (kN*m)	Md (kN*m)	γ	CHECK
273.0	0.010	1.046	285.6	0.0	#¡DIV/0!	OK!
2326.7	0.088	0.892	2075.4	0.0	#¡DIV/0!	OK!
3589.2	0.136	0.860	3087.9	334.1	9.24	OK!
3799.8	0.144	0.856	3251.5	669.6	4.86	OK!
3607.6	0.137	0.889	3205.7	948.4	3.38	OK!
3931.4	0.149	0.883	3470.0	1244.0	2.79	OK!
4246.3	0.161	0.877	3724.6	1485.7	2.51	OK!
4209.9	0.160	0.878	3694.9	1739.5	2.12	OK!
4462.0	0.169	0.885	3947.3	1935.9	2.04	OK!
4796.9	0.182	0.879	4216.6	2164.7	1.95	OK!
4979.3	0.189	0.876	4361.8	2307.2	1.89	OK!
4949.2	0.188	0.876	4337.8	2512.4	1.73	OK!
4947.2	0.188	0.876	4336.1	2621.0	1.65	OK!
4917.5	0.187	0.877	4312.3	2774.3	1.55	OK!
4915.5	0.187	0.877	4310.7	2859.3	1.51	OK!
4886.8	0.185	0.877	4287.7	2966.0	1.45	OK!
4884.8	0.185	0.877	4286.1	3030.1	1.41	OK!
4856.8	0.184	0.878	4263.5	3110.4	1.37	OK!
4854.7	0.184	0.878	4261.9	3148.2	1.35	OK!
4827.4	0.183	0.878	4239.9	3195.5	1.33	OK!
4825.4	0.183	0.878	4238.3	3206.9	1.32	OK!
4797.7	0.182	0.879	4216.0	3221.8	1.31	OK!

FECHA: HOJA: DE

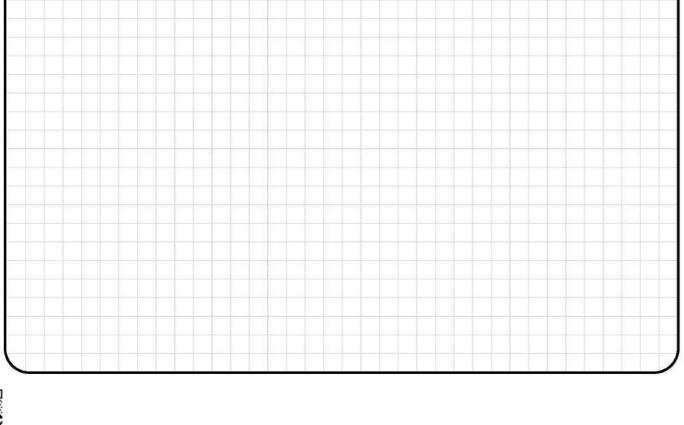
CÁLCULO DE SECCIONES DE HORMIGÓN ARMADO / PRETENSADO: COMPROBACIÓN ELU CORTANTE (EHE-08)

CARACTERÍSTICAS DE LOS MATERIALES

HORMI	GÓN	VIGA	

ACERO CERCOS

50 MPa

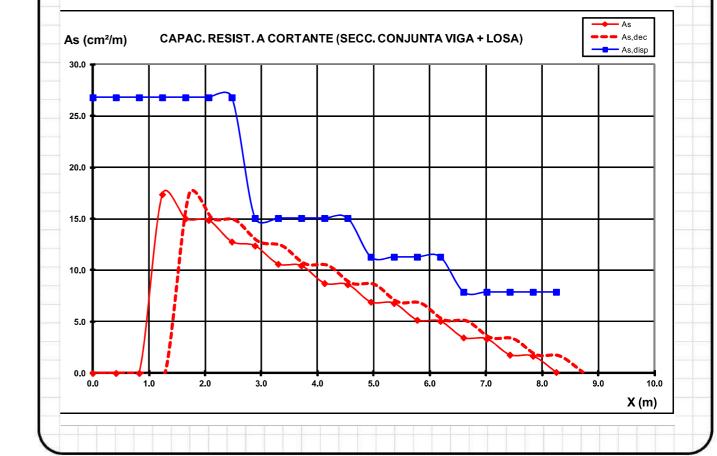

500 MPa 1.15

1.5 33.3 **MPa**

400.0 **MPa**

		CARAC	TERÍSTIC	AS DE LA	SECCIÓN DI		.0	
X (m)	b 0 (m)	d (m)	z (m)	A _{s1} (cm ²)	A _{secc} (m ²)	α°	θ°	CHECK
-0.400	0.120	1.050	1.046	6.3	0.7173	90.0	45.0	OK!
0.000	0.120	0.927	0.892	14.9	0.7173	90.0	45.0	OK!
0.413	0.120	0.915	0.860	23.8	0.7173	90.0	45.0	OK!
0.825	0.120	0.913	0.856	25.9	0.7173	90.0	45.0	OK!
1.238	0.120	0.943	0.889	26.7	0.7173	90.0	45.0	OK!
1.650	0.120	0.942	0.883	29.3	0.7173	90.0	45.0	OK!
2.063	0.120	0.942	0.877	31.5	0.7173	90.0	45.0	OK!
2.475	0.120	0.942	0.878	31.5	0.7173	90.0	45.0	OK!
2.888	0.120	0.952	0.885	33.3	0.7173	90.0	45.0	OK!
3.300	0.120	0.952	0.879	35.8	0.7173	90.0	45.0	OK!
3.713	0.120	0.952	0.876	37.1	0.7173	90.0	45.0	OK!
4.125	0.120	0.952	0.876	37.1	0.7173	90.0	45.0	OK!
4.538	0.120	0.952	0.876	37.1	0.7173	90.0	45.0	OK!
4.950	0.120	0.952	0.877	37.1	0.7173	90.0	45.0	OK!
5.363	0.120	0.952	0.877	37.1	0.7173	90.0	45.0	OK!
5.775	0.120	0.952	0.877	37.1	0.7173	90.0	45.0	OK!
6.188	0.120	0.952	0.877	37.1	0.7173	90.0	45.0	OK!
6.600	0.120	0.952	0.878	37.1	0.7173	90.0	45.0	OK!
7.013	0.120	0.952	0.878	37.1	0.7173	90.0	45.0	OK!
7.425	0.120	0.952	0.878	37.1	0.7173	90.0	45.0	OK!
7.838	0.120	0.952	0.878	37.1	0.7173	90.0	45.0	OK!
8,250	0.120	0.952	0.879	37.1	0.7173	90,0	45.0	OK!

ESFUERZOS DE CÁLCULO					
V _{rd} (kN)	N _d (kN)	SIGNO			
0.0	0.0	COMP.			
826.9	799.5	COMP.			
822.8	1624.8	COMP.			
737.1	1817.9	COMP.			
733.1	1896.5	COMP.			
651.4	2132,4	COMP.			
647.3	2337.4	COMP.			
574.4	2337.4	COMP.			
569.0	2501.7	COMP.			
509.6	2737.5	COMP.			
505.6	2856.8	COMP.			
445.5	2856.8	COMP.			
441.5	2856.8	COMP.			
382.1	2856.8	COMP.			
378.0	2856.8	COMP.			
320.6	2856.8	COMP.			
316.6	2856.8	COMP.			
260.6	2856.8	COMP.			
256.5	2856.8	COMP.			
201.8	2856.8	COMP.			
197.8	2856.8	COMP.			
142.4	2856.8	COMP.			



PROYECTO:

X (m)	Xdec (m)	A _{a,nec} (cm ² /m)		A _{a,disp} (cm ² /m)	$A_{\alpha, min}$ (cm ² /m)	f _{ct,m} (MPa)	V_{rd} / V_{u1}	s _{t,max} (m
-0.400	0.125	0.0	26.8	f16 0.15	0.0	4.1	0.00	0.300
0.000	0.464	0.0	26.8		0.0	4.1	0.72	0.278
0.413	0.870	0.0	26.8		0.0	4.1	0.70	0.274
0.825	1.282	0.0	26.8		0.0	4.1	0.62	0.300
1.238	1.709	17.4	26.8		1.6	4.1	0.60	0.300
1.650	2.121	15.0	26.8		1.6	4.1	0.53	0.300
2.063	2.533	14.9	26.8		1.6	4.1	0.52	0.300
2.475	2.946	12.8	26.8		1.6	4.1	0.46	0.300
2.888	3.364	12.4	15.1	f12 0.15	1.6	4.1	0.45	0.300
3.300	3.776	10.6	15.1		1.6	4.1	0.40	0.300
3.713	4.188	10.5	15.1		1.6	4.1	0.40	0.300
4.125	4.601	8.7	15.1		1.6	4.1	0.35	0.300
4.538	5.013	8.6	15.1		1.6	4.1	0.35	0.300
4.950	5.426	6.9	11.3	f12 0.20	1.6	4.1	0.30	0.300
5.363	5.838	6.8	11.3		1.6	4.1	0.30	0.300
5.775	6.251	5.2	11.3		1.6	4.1	0.25	0.300
6.188	6.663	5.1	11.3		1.6	4.1	0.25	0.300
6.600	7.076	3.5	7.9	f10 0.20	1.6	4.1	0.20	0.300
7.013	7.488	3.3	7.9		1.6	4.1	0.20	0.300
7.425	7.901	1.8	7.9		1.6	4.1	0.16	0.300
7.838	8.313	1.7	7.9		1.6	4.1	0.15	0.300
8,250	8,726	0.1	7.9		1.6	4.1	0.11	0.300

